This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zeqzmulgcd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 2 | gcdcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) | |
| 3 | 2 | nn0zd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) | |
| 5 | divides | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ) ) |
| 7 | eqcom | ⊢ ( ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) | |
| 8 | 7 | a1i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 ↔ ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 10 | 9 | biimpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) = 𝐴 → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 11 | 6 10 | sylbid | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 12 | 11 | adantrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) ) |
| 13 | 1 12 | mpd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑛 · ( 𝐴 gcd 𝐵 ) ) ) |