This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for divalg . (Contributed by Paul Chapman, 21-Mar-2011) (Revised by AV, 2-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divalglem0.1 | |- N e. ZZ |
|
| divalglem0.2 | |- D e. ZZ |
||
| divalglem1.3 | |- D =/= 0 |
||
| divalglem2.4 | |- S = { r e. NN0 | D || ( N - r ) } |
||
| divalglem5.5 | |- R = inf ( S , RR , < ) |
||
| Assertion | divalglem5 | |- ( 0 <_ R /\ R < ( abs ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divalglem0.1 | |- N e. ZZ |
|
| 2 | divalglem0.2 | |- D e. ZZ |
|
| 3 | divalglem1.3 | |- D =/= 0 |
|
| 4 | divalglem2.4 | |- S = { r e. NN0 | D || ( N - r ) } |
|
| 5 | divalglem5.5 | |- R = inf ( S , RR , < ) |
|
| 6 | 1 2 3 4 | divalglem2 | |- inf ( S , RR , < ) e. S |
| 7 | 5 6 | eqeltri | |- R e. S |
| 8 | oveq2 | |- ( x = R -> ( N - x ) = ( N - R ) ) |
|
| 9 | 8 | breq2d | |- ( x = R -> ( D || ( N - x ) <-> D || ( N - R ) ) ) |
| 10 | oveq2 | |- ( r = x -> ( N - r ) = ( N - x ) ) |
|
| 11 | 10 | breq2d | |- ( r = x -> ( D || ( N - r ) <-> D || ( N - x ) ) ) |
| 12 | 11 | cbvrabv | |- { r e. NN0 | D || ( N - r ) } = { x e. NN0 | D || ( N - x ) } |
| 13 | 4 12 | eqtri | |- S = { x e. NN0 | D || ( N - x ) } |
| 14 | 9 13 | elrab2 | |- ( R e. S <-> ( R e. NN0 /\ D || ( N - R ) ) ) |
| 15 | 7 14 | mpbi | |- ( R e. NN0 /\ D || ( N - R ) ) |
| 16 | 15 | simpli | |- R e. NN0 |
| 17 | 16 | nn0ge0i | |- 0 <_ R |
| 18 | nnabscl | |- ( ( D e. ZZ /\ D =/= 0 ) -> ( abs ` D ) e. NN ) |
|
| 19 | 2 3 18 | mp2an | |- ( abs ` D ) e. NN |
| 20 | 19 | nngt0i | |- 0 < ( abs ` D ) |
| 21 | 0re | |- 0 e. RR |
|
| 22 | zcn | |- ( D e. ZZ -> D e. CC ) |
|
| 23 | 2 22 | ax-mp | |- D e. CC |
| 24 | 23 | abscli | |- ( abs ` D ) e. RR |
| 25 | 21 24 | ltnlei | |- ( 0 < ( abs ` D ) <-> -. ( abs ` D ) <_ 0 ) |
| 26 | 20 25 | mpbi | |- -. ( abs ` D ) <_ 0 |
| 27 | 4 | ssrab3 | |- S C_ NN0 |
| 28 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 29 | 27 28 | sseqtri | |- S C_ ( ZZ>= ` 0 ) |
| 30 | nn0abscl | |- ( D e. ZZ -> ( abs ` D ) e. NN0 ) |
|
| 31 | 2 30 | ax-mp | |- ( abs ` D ) e. NN0 |
| 32 | nn0sub2 | |- ( ( ( abs ` D ) e. NN0 /\ R e. NN0 /\ ( abs ` D ) <_ R ) -> ( R - ( abs ` D ) ) e. NN0 ) |
|
| 33 | 31 16 32 | mp3an12 | |- ( ( abs ` D ) <_ R -> ( R - ( abs ` D ) ) e. NN0 ) |
| 34 | 15 | a1i | |- ( ( abs ` D ) <_ R -> ( R e. NN0 /\ D || ( N - R ) ) ) |
| 35 | nn0z | |- ( R e. NN0 -> R e. ZZ ) |
|
| 36 | 1z | |- 1 e. ZZ |
|
| 37 | 1 2 | divalglem0 | |- ( ( R e. ZZ /\ 1 e. ZZ ) -> ( D || ( N - R ) -> D || ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) ) ) |
| 38 | 36 37 | mpan2 | |- ( R e. ZZ -> ( D || ( N - R ) -> D || ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) ) ) |
| 39 | 24 | recni | |- ( abs ` D ) e. CC |
| 40 | 39 | mullidi | |- ( 1 x. ( abs ` D ) ) = ( abs ` D ) |
| 41 | 40 | oveq2i | |- ( R - ( 1 x. ( abs ` D ) ) ) = ( R - ( abs ` D ) ) |
| 42 | 41 | oveq2i | |- ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) = ( N - ( R - ( abs ` D ) ) ) |
| 43 | 42 | breq2i | |- ( D || ( N - ( R - ( 1 x. ( abs ` D ) ) ) ) <-> D || ( N - ( R - ( abs ` D ) ) ) ) |
| 44 | 38 43 | imbitrdi | |- ( R e. ZZ -> ( D || ( N - R ) -> D || ( N - ( R - ( abs ` D ) ) ) ) ) |
| 45 | 35 44 | syl | |- ( R e. NN0 -> ( D || ( N - R ) -> D || ( N - ( R - ( abs ` D ) ) ) ) ) |
| 46 | 45 | imp | |- ( ( R e. NN0 /\ D || ( N - R ) ) -> D || ( N - ( R - ( abs ` D ) ) ) ) |
| 47 | 34 46 | syl | |- ( ( abs ` D ) <_ R -> D || ( N - ( R - ( abs ` D ) ) ) ) |
| 48 | oveq2 | |- ( x = ( R - ( abs ` D ) ) -> ( N - x ) = ( N - ( R - ( abs ` D ) ) ) ) |
|
| 49 | 48 | breq2d | |- ( x = ( R - ( abs ` D ) ) -> ( D || ( N - x ) <-> D || ( N - ( R - ( abs ` D ) ) ) ) ) |
| 50 | 49 13 | elrab2 | |- ( ( R - ( abs ` D ) ) e. S <-> ( ( R - ( abs ` D ) ) e. NN0 /\ D || ( N - ( R - ( abs ` D ) ) ) ) ) |
| 51 | 33 47 50 | sylanbrc | |- ( ( abs ` D ) <_ R -> ( R - ( abs ` D ) ) e. S ) |
| 52 | infssuzle | |- ( ( S C_ ( ZZ>= ` 0 ) /\ ( R - ( abs ` D ) ) e. S ) -> inf ( S , RR , < ) <_ ( R - ( abs ` D ) ) ) |
|
| 53 | 29 51 52 | sylancr | |- ( ( abs ` D ) <_ R -> inf ( S , RR , < ) <_ ( R - ( abs ` D ) ) ) |
| 54 | 5 53 | eqbrtrid | |- ( ( abs ` D ) <_ R -> R <_ ( R - ( abs ` D ) ) ) |
| 55 | 34 | simpld | |- ( ( abs ` D ) <_ R -> R e. NN0 ) |
| 56 | 55 | nn0red | |- ( ( abs ` D ) <_ R -> R e. RR ) |
| 57 | lesub | |- ( ( R e. RR /\ R e. RR /\ ( abs ` D ) e. RR ) -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ ( R - R ) ) ) |
|
| 58 | 24 57 | mp3an3 | |- ( ( R e. RR /\ R e. RR ) -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ ( R - R ) ) ) |
| 59 | 56 56 58 | syl2anc | |- ( ( abs ` D ) <_ R -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ ( R - R ) ) ) |
| 60 | 56 | recnd | |- ( ( abs ` D ) <_ R -> R e. CC ) |
| 61 | 60 | subidd | |- ( ( abs ` D ) <_ R -> ( R - R ) = 0 ) |
| 62 | 61 | breq2d | |- ( ( abs ` D ) <_ R -> ( ( abs ` D ) <_ ( R - R ) <-> ( abs ` D ) <_ 0 ) ) |
| 63 | 59 62 | bitrd | |- ( ( abs ` D ) <_ R -> ( R <_ ( R - ( abs ` D ) ) <-> ( abs ` D ) <_ 0 ) ) |
| 64 | 54 63 | mpbid | |- ( ( abs ` D ) <_ R -> ( abs ` D ) <_ 0 ) |
| 65 | 26 64 | mto | |- -. ( abs ` D ) <_ R |
| 66 | 16 | nn0rei | |- R e. RR |
| 67 | 66 24 | ltnlei | |- ( R < ( abs ` D ) <-> -. ( abs ` D ) <_ R ) |
| 68 | 65 67 | mpbir | |- R < ( abs ` D ) |
| 69 | 17 68 | pm3.2i | |- ( 0 <_ R /\ R < ( abs ` D ) ) |