This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996) (Revised by Mario Carneiro, 14-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrlem5pr | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( ( A .P. B ) +P. ( A .P. C ) ) C_ ( A .P. ( B +P. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpr | |- ( ( A e. P. /\ B e. P. ) -> ( A .P. B ) e. P. ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( A .P. B ) e. P. ) |
| 3 | mulclpr | |- ( ( A e. P. /\ C e. P. ) -> ( A .P. C ) e. P. ) |
|
| 4 | df-plp | |- +P. = ( x e. P. , y e. P. |-> { f | E. g e. x E. h e. y f = ( g +Q h ) } ) |
|
| 5 | addclnq | |- ( ( g e. Q. /\ h e. Q. ) -> ( g +Q h ) e. Q. ) |
|
| 6 | 4 5 | genpelv | |- ( ( ( A .P. B ) e. P. /\ ( A .P. C ) e. P. ) -> ( w e. ( ( A .P. B ) +P. ( A .P. C ) ) <-> E. v e. ( A .P. B ) E. u e. ( A .P. C ) w = ( v +Q u ) ) ) |
| 7 | 2 3 6 | 3imp3i2an | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( w e. ( ( A .P. B ) +P. ( A .P. C ) ) <-> E. v e. ( A .P. B ) E. u e. ( A .P. C ) w = ( v +Q u ) ) ) |
| 8 | df-mp | |- .P. = ( w e. P. , v e. P. |-> { x | E. g e. w E. h e. v x = ( g .Q h ) } ) |
|
| 9 | mulclnq | |- ( ( g e. Q. /\ h e. Q. ) -> ( g .Q h ) e. Q. ) |
|
| 10 | 8 9 | genpelv | |- ( ( A e. P. /\ C e. P. ) -> ( u e. ( A .P. C ) <-> E. f e. A E. z e. C u = ( f .Q z ) ) ) |
| 11 | 10 | 3adant2 | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( u e. ( A .P. C ) <-> E. f e. A E. z e. C u = ( f .Q z ) ) ) |
| 12 | 11 | anbi2d | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( ( v e. ( A .P. B ) /\ u e. ( A .P. C ) ) <-> ( v e. ( A .P. B ) /\ E. f e. A E. z e. C u = ( f .Q z ) ) ) ) |
| 13 | df-mp | |- .P. = ( w e. P. , v e. P. |-> { f | E. g e. w E. h e. v f = ( g .Q h ) } ) |
|
| 14 | 13 9 | genpelv | |- ( ( A e. P. /\ B e. P. ) -> ( v e. ( A .P. B ) <-> E. x e. A E. y e. B v = ( x .Q y ) ) ) |
| 15 | 14 | 3adant3 | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( v e. ( A .P. B ) <-> E. x e. A E. y e. B v = ( x .Q y ) ) ) |
| 16 | distrlem4pr | |- ( ( ( A e. P. /\ B e. P. /\ C e. P. ) /\ ( ( x e. A /\ y e. B ) /\ ( f e. A /\ z e. C ) ) ) -> ( ( x .Q y ) +Q ( f .Q z ) ) e. ( A .P. ( B +P. C ) ) ) |
|
| 17 | oveq12 | |- ( ( v = ( x .Q y ) /\ u = ( f .Q z ) ) -> ( v +Q u ) = ( ( x .Q y ) +Q ( f .Q z ) ) ) |
|
| 18 | 17 | eqeq2d | |- ( ( v = ( x .Q y ) /\ u = ( f .Q z ) ) -> ( w = ( v +Q u ) <-> w = ( ( x .Q y ) +Q ( f .Q z ) ) ) ) |
| 19 | eleq1 | |- ( w = ( ( x .Q y ) +Q ( f .Q z ) ) -> ( w e. ( A .P. ( B +P. C ) ) <-> ( ( x .Q y ) +Q ( f .Q z ) ) e. ( A .P. ( B +P. C ) ) ) ) |
|
| 20 | 18 19 | biimtrdi | |- ( ( v = ( x .Q y ) /\ u = ( f .Q z ) ) -> ( w = ( v +Q u ) -> ( w e. ( A .P. ( B +P. C ) ) <-> ( ( x .Q y ) +Q ( f .Q z ) ) e. ( A .P. ( B +P. C ) ) ) ) ) |
| 21 | 20 | imp | |- ( ( ( v = ( x .Q y ) /\ u = ( f .Q z ) ) /\ w = ( v +Q u ) ) -> ( w e. ( A .P. ( B +P. C ) ) <-> ( ( x .Q y ) +Q ( f .Q z ) ) e. ( A .P. ( B +P. C ) ) ) ) |
| 22 | 16 21 | syl5ibrcom | |- ( ( ( A e. P. /\ B e. P. /\ C e. P. ) /\ ( ( x e. A /\ y e. B ) /\ ( f e. A /\ z e. C ) ) ) -> ( ( ( v = ( x .Q y ) /\ u = ( f .Q z ) ) /\ w = ( v +Q u ) ) -> w e. ( A .P. ( B +P. C ) ) ) ) |
| 23 | 22 | exp4b | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( ( ( x e. A /\ y e. B ) /\ ( f e. A /\ z e. C ) ) -> ( ( v = ( x .Q y ) /\ u = ( f .Q z ) ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) |
| 24 | 23 | com3l | |- ( ( ( x e. A /\ y e. B ) /\ ( f e. A /\ z e. C ) ) -> ( ( v = ( x .Q y ) /\ u = ( f .Q z ) ) -> ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) |
| 25 | 24 | exp4b | |- ( ( x e. A /\ y e. B ) -> ( ( f e. A /\ z e. C ) -> ( v = ( x .Q y ) -> ( u = ( f .Q z ) -> ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) ) ) |
| 26 | 25 | com23 | |- ( ( x e. A /\ y e. B ) -> ( v = ( x .Q y ) -> ( ( f e. A /\ z e. C ) -> ( u = ( f .Q z ) -> ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) ) ) |
| 27 | 26 | rexlimivv | |- ( E. x e. A E. y e. B v = ( x .Q y ) -> ( ( f e. A /\ z e. C ) -> ( u = ( f .Q z ) -> ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) ) |
| 28 | 27 | rexlimdvv | |- ( E. x e. A E. y e. B v = ( x .Q y ) -> ( E. f e. A E. z e. C u = ( f .Q z ) -> ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) |
| 29 | 28 | com3r | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( E. x e. A E. y e. B v = ( x .Q y ) -> ( E. f e. A E. z e. C u = ( f .Q z ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) |
| 30 | 15 29 | sylbid | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( v e. ( A .P. B ) -> ( E. f e. A E. z e. C u = ( f .Q z ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) ) |
| 31 | 30 | impd | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( ( v e. ( A .P. B ) /\ E. f e. A E. z e. C u = ( f .Q z ) ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) |
| 32 | 12 31 | sylbid | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( ( v e. ( A .P. B ) /\ u e. ( A .P. C ) ) -> ( w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) ) |
| 33 | 32 | rexlimdvv | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( E. v e. ( A .P. B ) E. u e. ( A .P. C ) w = ( v +Q u ) -> w e. ( A .P. ( B +P. C ) ) ) ) |
| 34 | 7 33 | sylbid | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( w e. ( ( A .P. B ) +P. ( A .P. C ) ) -> w e. ( A .P. ( B +P. C ) ) ) ) |
| 35 | 34 | ssrdv | |- ( ( A e. P. /\ B e. P. /\ C e. P. ) -> ( ( A .P. B ) +P. ( A .P. C ) ) C_ ( A .P. ( B +P. C ) ) ) |