This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996) (Revised by Mario Carneiro, 13-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | distrlem1pr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ⊆ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addclpr | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐵 +P 𝐶 ) ∈ P ) | |
| 2 | df-mp | ⊢ ·P = ( 𝑦 ∈ P , 𝑧 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑦 ∃ ℎ ∈ 𝑧 𝑓 = ( 𝑔 ·Q ℎ ) } ) | |
| 3 | mulclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 ·Q ℎ ) ∈ Q ) | |
| 4 | 2 3 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 +P 𝐶 ) ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) |
| 5 | 1 4 | sylan2 | ⊢ ( ( 𝐴 ∈ P ∧ ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) |
| 6 | 5 | 3impb | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) |
| 7 | df-plp | ⊢ +P = ( 𝑤 ∈ P , 𝑥 ∈ P ↦ { 𝑓 ∣ ∃ 𝑔 ∈ 𝑤 ∃ ℎ ∈ 𝑥 𝑓 = ( 𝑔 +Q ℎ ) } ) | |
| 8 | addclnq | ⊢ ( ( 𝑔 ∈ Q ∧ ℎ ∈ Q ) → ( 𝑔 +Q ℎ ) ∈ Q ) | |
| 9 | 7 8 | genpelv | ⊢ ( ( 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) |
| 12 | simprr | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → 𝑤 = ( 𝑥 ·Q 𝑣 ) ) | |
| 13 | simpr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑣 = ( 𝑦 +Q 𝑧 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑣 = ( 𝑦 +Q 𝑧 ) → ( 𝑥 ·Q 𝑣 ) = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ) | |
| 15 | 14 | eqeq2d | ⊢ ( 𝑣 = ( 𝑦 +Q 𝑧 ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ↔ 𝑤 = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ) ) |
| 16 | 15 | biimpac | ⊢ ( ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑤 = ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) ) |
| 17 | distrnq | ⊢ ( 𝑥 ·Q ( 𝑦 +Q 𝑧 ) ) = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) | |
| 18 | 16 17 | eqtrdi | ⊢ ( ( 𝑤 = ( 𝑥 ·Q 𝑣 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) |
| 19 | 12 13 18 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → 𝑤 = ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ) |
| 20 | mulclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) | |
| 21 | 20 | 3adant3 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝐴 ·P 𝐵 ) ∈ P ) |
| 23 | mulclpr | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐶 ) ∈ P ) | |
| 24 | 23 | 3adant2 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P 𝐶 ) ∈ P ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝐴 ·P 𝐶 ) ∈ P ) |
| 26 | simpll | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑦 ∈ 𝐵 ) | |
| 27 | 2 3 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 28 | 27 | 3adant3 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) ) |
| 29 | 28 | impl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) |
| 30 | 29 | adantlrr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) |
| 31 | 26 30 | sylan2 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ) |
| 32 | simplr | ⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) → 𝑧 ∈ 𝐶 ) | |
| 33 | 2 3 | genpprecl | ⊢ ( ( 𝐴 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) ) |
| 34 | 33 | 3adant2 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) ) |
| 35 | 34 | impl | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) |
| 36 | 35 | adantlrr | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) |
| 37 | 32 36 | sylan2 | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) |
| 38 | 7 8 | genpprecl | ⊢ ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) → ( ( ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ∧ ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
| 39 | 38 | imp | ⊢ ( ( ( ( 𝐴 ·P 𝐵 ) ∈ P ∧ ( 𝐴 ·P 𝐶 ) ∈ P ) ∧ ( ( 𝑥 ·Q 𝑦 ) ∈ ( 𝐴 ·P 𝐵 ) ∧ ( 𝑥 ·Q 𝑧 ) ∈ ( 𝐴 ·P 𝐶 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
| 40 | 22 25 31 37 39 | syl22anc | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → ( ( 𝑥 ·Q 𝑦 ) +Q ( 𝑥 ·Q 𝑧 ) ) ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
| 41 | 19 40 | eqeltrd | ⊢ ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) ∧ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ∧ 𝑣 = ( 𝑦 +Q 𝑧 ) ) ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |
| 42 | 41 | exp32 | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑣 = ( 𝑦 +Q 𝑧 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) |
| 43 | 42 | rexlimdvv | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐶 𝑣 = ( 𝑦 +Q 𝑧 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
| 44 | 11 43 | sylbid | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑤 = ( 𝑥 ·Q 𝑣 ) ) ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
| 45 | 44 | exp32 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ 𝐴 → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) ) |
| 46 | 45 | com34 | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑥 ∈ 𝐴 → ( 𝑣 ∈ ( 𝐵 +P 𝐶 ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) ) |
| 47 | 46 | impd | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑣 ∈ ( 𝐵 +P 𝐶 ) ) → ( 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) ) |
| 48 | 47 | rexlimdvv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝐵 +P 𝐶 ) 𝑤 = ( 𝑥 ·Q 𝑣 ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
| 49 | 6 48 | sylbid | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝑤 ∈ ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) → 𝑤 ∈ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) ) |
| 50 | 49 | ssrdv | ⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P ) → ( 𝐴 ·P ( 𝐵 +P 𝐶 ) ) ⊆ ( ( 𝐴 ·P 𝐵 ) +P ( 𝐴 ·P 𝐶 ) ) ) |