This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | distgp.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| distgp.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| Assertion | distgp | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → 𝐺 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distgp.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | distgp.2 | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → 𝐺 ∈ Grp ) | |
| 4 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → 𝐽 = 𝒫 𝐵 ) | |
| 5 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 6 | distopon | ⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ ( TopOn ‘ 𝐵 ) ) | |
| 7 | 5 6 | ax-mp | ⊢ 𝒫 𝐵 ∈ ( TopOn ‘ 𝐵 ) |
| 8 | 4 7 | eqeltrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 9 | 1 2 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 10 | 8 9 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → 𝐺 ∈ TopSp ) |
| 11 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 12 | 1 11 | grpsubf | ⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( -g ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 14 | 5 5 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 15 | 5 14 | elmap | ⊢ ( ( -g ‘ 𝐺 ) ∈ ( 𝐵 ↑m ( 𝐵 × 𝐵 ) ) ↔ ( -g ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
| 16 | 13 15 | sylibr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( -g ‘ 𝐺 ) ∈ ( 𝐵 ↑m ( 𝐵 × 𝐵 ) ) ) |
| 17 | 4 4 | oveq12d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( 𝐽 ×t 𝐽 ) = ( 𝒫 𝐵 ×t 𝒫 𝐵 ) ) |
| 18 | txdis | ⊢ ( ( 𝐵 ∈ V ∧ 𝐵 ∈ V ) → ( 𝒫 𝐵 ×t 𝒫 𝐵 ) = 𝒫 ( 𝐵 × 𝐵 ) ) | |
| 19 | 5 5 18 | mp2an | ⊢ ( 𝒫 𝐵 ×t 𝒫 𝐵 ) = 𝒫 ( 𝐵 × 𝐵 ) |
| 20 | 17 19 | eqtrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( 𝐽 ×t 𝐽 ) = 𝒫 ( 𝐵 × 𝐵 ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) = ( 𝒫 ( 𝐵 × 𝐵 ) Cn 𝐽 ) ) |
| 22 | cndis | ⊢ ( ( ( 𝐵 × 𝐵 ) ∈ V ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝒫 ( 𝐵 × 𝐵 ) Cn 𝐽 ) = ( 𝐵 ↑m ( 𝐵 × 𝐵 ) ) ) | |
| 23 | 14 8 22 | sylancr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( 𝒫 ( 𝐵 × 𝐵 ) Cn 𝐽 ) = ( 𝐵 ↑m ( 𝐵 × 𝐵 ) ) ) |
| 24 | 21 23 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) = ( 𝐵 ↑m ( 𝐵 × 𝐵 ) ) ) |
| 25 | 16 24 | eleqtrrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 26 | 2 11 | istgp2 | ⊢ ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 27 | 3 10 25 26 | syl3anbrc | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐽 = 𝒫 𝐵 ) → 𝐺 ∈ TopGrp ) |