This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any group equipped with the discrete topology is a topological group. (Contributed by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | distgp.1 | |- B = ( Base ` G ) |
|
| distgp.2 | |- J = ( TopOpen ` G ) |
||
| Assertion | distgp | |- ( ( G e. Grp /\ J = ~P B ) -> G e. TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | distgp.1 | |- B = ( Base ` G ) |
|
| 2 | distgp.2 | |- J = ( TopOpen ` G ) |
|
| 3 | simpl | |- ( ( G e. Grp /\ J = ~P B ) -> G e. Grp ) |
|
| 4 | simpr | |- ( ( G e. Grp /\ J = ~P B ) -> J = ~P B ) |
|
| 5 | 1 | fvexi | |- B e. _V |
| 6 | distopon | |- ( B e. _V -> ~P B e. ( TopOn ` B ) ) |
|
| 7 | 5 6 | ax-mp | |- ~P B e. ( TopOn ` B ) |
| 8 | 4 7 | eqeltrdi | |- ( ( G e. Grp /\ J = ~P B ) -> J e. ( TopOn ` B ) ) |
| 9 | 1 2 | istps | |- ( G e. TopSp <-> J e. ( TopOn ` B ) ) |
| 10 | 8 9 | sylibr | |- ( ( G e. Grp /\ J = ~P B ) -> G e. TopSp ) |
| 11 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 12 | 1 11 | grpsubf | |- ( G e. Grp -> ( -g ` G ) : ( B X. B ) --> B ) |
| 13 | 12 | adantr | |- ( ( G e. Grp /\ J = ~P B ) -> ( -g ` G ) : ( B X. B ) --> B ) |
| 14 | 5 5 | xpex | |- ( B X. B ) e. _V |
| 15 | 5 14 | elmap | |- ( ( -g ` G ) e. ( B ^m ( B X. B ) ) <-> ( -g ` G ) : ( B X. B ) --> B ) |
| 16 | 13 15 | sylibr | |- ( ( G e. Grp /\ J = ~P B ) -> ( -g ` G ) e. ( B ^m ( B X. B ) ) ) |
| 17 | 4 4 | oveq12d | |- ( ( G e. Grp /\ J = ~P B ) -> ( J tX J ) = ( ~P B tX ~P B ) ) |
| 18 | txdis | |- ( ( B e. _V /\ B e. _V ) -> ( ~P B tX ~P B ) = ~P ( B X. B ) ) |
|
| 19 | 5 5 18 | mp2an | |- ( ~P B tX ~P B ) = ~P ( B X. B ) |
| 20 | 17 19 | eqtrdi | |- ( ( G e. Grp /\ J = ~P B ) -> ( J tX J ) = ~P ( B X. B ) ) |
| 21 | 20 | oveq1d | |- ( ( G e. Grp /\ J = ~P B ) -> ( ( J tX J ) Cn J ) = ( ~P ( B X. B ) Cn J ) ) |
| 22 | cndis | |- ( ( ( B X. B ) e. _V /\ J e. ( TopOn ` B ) ) -> ( ~P ( B X. B ) Cn J ) = ( B ^m ( B X. B ) ) ) |
|
| 23 | 14 8 22 | sylancr | |- ( ( G e. Grp /\ J = ~P B ) -> ( ~P ( B X. B ) Cn J ) = ( B ^m ( B X. B ) ) ) |
| 24 | 21 23 | eqtrd | |- ( ( G e. Grp /\ J = ~P B ) -> ( ( J tX J ) Cn J ) = ( B ^m ( B X. B ) ) ) |
| 25 | 16 24 | eleqtrrd | |- ( ( G e. Grp /\ J = ~P B ) -> ( -g ` G ) e. ( ( J tX J ) Cn J ) ) |
| 26 | 2 11 | istgp2 | |- ( G e. TopGrp <-> ( G e. Grp /\ G e. TopSp /\ ( -g ` G ) e. ( ( J tX J ) Cn J ) ) ) |
| 27 | 3 10 25 26 | syl3anbrc | |- ( ( G e. Grp /\ J = ~P B ) -> G e. TopGrp ) |