This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjdmqscossss | ⊢ ( Disj 𝑅 → ( dom ≀ 𝑅 / ≀ 𝑅 ) ⊆ ( dom 𝑅 / 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjrel | ⊢ ( Disj 𝑅 → Rel 𝑅 ) | |
| 2 | releldmqscoss | ⊢ ( 𝑣 ∈ V → ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) | |
| 3 | 2 | elv | ⊢ ( Rel 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 4 | 1 3 | syl | ⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 5 | disjlem19 | ⊢ ( 𝑥 ∈ V → ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) ) | |
| 6 | 5 | elv | ⊢ ( Disj 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑥 ∈ [ 𝑢 ] 𝑅 ) → [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 7 | 6 | ralrimivv | ⊢ ( Disj 𝑅 → ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ) |
| 8 | 2r19.29 | ⊢ ( ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) | |
| 9 | 8 | ex | ⊢ ( ∀ 𝑢 ∈ dom 𝑅 ∀ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
| 10 | 7 9 | syl | ⊢ ( Disj 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝑣 = [ 𝑥 ] ≀ 𝑅 → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
| 11 | 4 10 | sylbid | ⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
| 12 | eqtr3 | ⊢ ( ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → [ 𝑢 ] 𝑅 = 𝑣 ) | |
| 13 | 12 | reximi | ⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) |
| 14 | 13 | reximi | ⊢ ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 ( [ 𝑢 ] 𝑅 = [ 𝑥 ] ≀ 𝑅 ∧ 𝑣 = [ 𝑥 ] ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) |
| 15 | 11 14 | syl6 | ⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) ) |
| 16 | df-rex | ⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ↔ ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ) | |
| 17 | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ) | |
| 18 | 16 17 | bitri | ⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ↔ ( ∃ 𝑥 𝑥 ∈ [ 𝑢 ] 𝑅 ∧ [ 𝑢 ] 𝑅 = 𝑣 ) ) |
| 19 | 18 | simprbi | ⊢ ( ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 → [ 𝑢 ] 𝑅 = 𝑣 ) |
| 20 | 19 | reximi | ⊢ ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 [ 𝑢 ] 𝑅 = 𝑣 → ∃ 𝑢 ∈ dom 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) |
| 21 | 15 20 | syl6 | ⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ) ) |
| 22 | eqcom | ⊢ ( [ 𝑢 ] 𝑅 = 𝑣 ↔ 𝑣 = [ 𝑢 ] 𝑅 ) | |
| 23 | 22 | rexbii | ⊢ ( ∃ 𝑢 ∈ dom 𝑅 [ 𝑢 ] 𝑅 = 𝑣 ↔ ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) |
| 24 | 21 23 | imbitrdi | ⊢ ( Disj 𝑅 → ( 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) → ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 ) ) |
| 25 | 24 | ss2abdv | ⊢ ( Disj 𝑅 → { 𝑣 ∣ 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) } ⊆ { 𝑣 ∣ ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 } ) |
| 26 | abid1 | ⊢ ( dom ≀ 𝑅 / ≀ 𝑅 ) = { 𝑣 ∣ 𝑣 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) } | |
| 27 | df-qs | ⊢ ( dom 𝑅 / 𝑅 ) = { 𝑣 ∣ ∃ 𝑢 ∈ dom 𝑅 𝑣 = [ 𝑢 ] 𝑅 } | |
| 28 | 25 26 27 | 3sstr4g | ⊢ ( Disj 𝑅 → ( dom ≀ 𝑅 / ≀ 𝑅 ) ⊆ ( dom 𝑅 / 𝑅 ) ) |