This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define quotient set. R is usually an equivalence relation. Definition of Enderton p. 58. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-qs | ⊢ ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cR | ⊢ 𝑅 | |
| 2 | 0 1 | cqs | ⊢ ( 𝐴 / 𝑅 ) |
| 3 | vy | ⊢ 𝑦 | |
| 4 | vx | ⊢ 𝑥 | |
| 5 | 3 | cv | ⊢ 𝑦 |
| 6 | 4 | cv | ⊢ 𝑥 |
| 7 | 6 1 | cec | ⊢ [ 𝑥 ] 𝑅 |
| 8 | 5 7 | wceq | ⊢ 𝑦 = [ 𝑥 ] 𝑅 |
| 9 | 8 4 0 | wrex | ⊢ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 |
| 10 | 9 3 | cab | ⊢ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |
| 11 | 2 10 | wceq | ⊢ ( 𝐴 / 𝑅 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝑅 } |