This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem r19.29 with two quantifiers. (Contributed by Rodolfo Medina, 25-Sep-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) ) | |
| 2 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) | |
| 3 | 2 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |
| 4 | 1 3 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ) |