This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjdmqscossss | |- ( Disj R -> ( dom ,~ R /. ,~ R ) C_ ( dom R /. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjrel | |- ( Disj R -> Rel R ) |
|
| 2 | releldmqscoss | |- ( v e. _V -> ( Rel R -> ( v e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) ) ) |
|
| 3 | 2 | elv | |- ( Rel R -> ( v e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) ) |
| 4 | 1 3 | syl | |- ( Disj R -> ( v e. ( dom ,~ R /. ,~ R ) <-> E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) ) |
| 5 | disjlem19 | |- ( x e. _V -> ( Disj R -> ( ( u e. dom R /\ x e. [ u ] R ) -> [ u ] R = [ x ] ,~ R ) ) ) |
|
| 6 | 5 | elv | |- ( Disj R -> ( ( u e. dom R /\ x e. [ u ] R ) -> [ u ] R = [ x ] ,~ R ) ) |
| 7 | 6 | ralrimivv | |- ( Disj R -> A. u e. dom R A. x e. [ u ] R [ u ] R = [ x ] ,~ R ) |
| 8 | 2r19.29 | |- ( ( A. u e. dom R A. x e. [ u ] R [ u ] R = [ x ] ,~ R /\ E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R ) -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ x ] ,~ R ) ) |
|
| 9 | 8 | ex | |- ( A. u e. dom R A. x e. [ u ] R [ u ] R = [ x ] ,~ R -> ( E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ x ] ,~ R ) ) ) |
| 10 | 7 9 | syl | |- ( Disj R -> ( E. u e. dom R E. x e. [ u ] R v = [ x ] ,~ R -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ x ] ,~ R ) ) ) |
| 11 | 4 10 | sylbid | |- ( Disj R -> ( v e. ( dom ,~ R /. ,~ R ) -> E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ x ] ,~ R ) ) ) |
| 12 | eqtr3 | |- ( ( [ u ] R = [ x ] ,~ R /\ v = [ x ] ,~ R ) -> [ u ] R = v ) |
|
| 13 | 12 | reximi | |- ( E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ x ] ,~ R ) -> E. x e. [ u ] R [ u ] R = v ) |
| 14 | 13 | reximi | |- ( E. u e. dom R E. x e. [ u ] R ( [ u ] R = [ x ] ,~ R /\ v = [ x ] ,~ R ) -> E. u e. dom R E. x e. [ u ] R [ u ] R = v ) |
| 15 | 11 14 | syl6 | |- ( Disj R -> ( v e. ( dom ,~ R /. ,~ R ) -> E. u e. dom R E. x e. [ u ] R [ u ] R = v ) ) |
| 16 | df-rex | |- ( E. x e. [ u ] R [ u ] R = v <-> E. x ( x e. [ u ] R /\ [ u ] R = v ) ) |
|
| 17 | 19.41v | |- ( E. x ( x e. [ u ] R /\ [ u ] R = v ) <-> ( E. x x e. [ u ] R /\ [ u ] R = v ) ) |
|
| 18 | 16 17 | bitri | |- ( E. x e. [ u ] R [ u ] R = v <-> ( E. x x e. [ u ] R /\ [ u ] R = v ) ) |
| 19 | 18 | simprbi | |- ( E. x e. [ u ] R [ u ] R = v -> [ u ] R = v ) |
| 20 | 19 | reximi | |- ( E. u e. dom R E. x e. [ u ] R [ u ] R = v -> E. u e. dom R [ u ] R = v ) |
| 21 | 15 20 | syl6 | |- ( Disj R -> ( v e. ( dom ,~ R /. ,~ R ) -> E. u e. dom R [ u ] R = v ) ) |
| 22 | eqcom | |- ( [ u ] R = v <-> v = [ u ] R ) |
|
| 23 | 22 | rexbii | |- ( E. u e. dom R [ u ] R = v <-> E. u e. dom R v = [ u ] R ) |
| 24 | 21 23 | imbitrdi | |- ( Disj R -> ( v e. ( dom ,~ R /. ,~ R ) -> E. u e. dom R v = [ u ] R ) ) |
| 25 | 24 | ss2abdv | |- ( Disj R -> { v | v e. ( dom ,~ R /. ,~ R ) } C_ { v | E. u e. dom R v = [ u ] R } ) |
| 26 | abid1 | |- ( dom ,~ R /. ,~ R ) = { v | v e. ( dom ,~ R /. ,~ R ) } |
|
| 27 | df-qs | |- ( dom R /. R ) = { v | E. u e. dom R v = [ u ] R } |
|
| 28 | 25 26 27 | 3sstr4g | |- ( Disj R -> ( dom ,~ R /. ,~ R ) C_ ( dom R /. R ) ) |