This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | releldmqscoss | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmqs1cossres | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ) ) |
| 3 | resdm | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) | |
| 4 | 3 | cosseqd | ⊢ ( Rel 𝑅 → ≀ ( 𝑅 ↾ dom 𝑅 ) = ≀ 𝑅 ) |
| 5 | 4 | dmqseqd | ⊢ ( Rel 𝑅 → ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) = ( dom ≀ 𝑅 / ≀ 𝑅 ) ) |
| 6 | 5 | eleq2d | ⊢ ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ ( 𝑅 ↾ dom 𝑅 ) / ≀ ( 𝑅 ↾ dom 𝑅 ) ) ↔ 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ) ) |
| 8 | 4 | eceq2d | ⊢ ( Rel 𝑅 → [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) = [ 𝑥 ] ≀ 𝑅 ) |
| 9 | 8 | eqeq2d | ⊢ ( Rel 𝑅 → ( 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 10 | 9 | 2rexbidv | ⊢ ( Rel 𝑅 → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 11 | 10 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ ( 𝑅 ↾ dom 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 12 | 2 7 11 | 3bitr3d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ Rel 𝑅 ) → ( 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) |
| 13 | 12 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( Rel 𝑅 → ( 𝐴 ∈ ( dom ≀ 𝑅 / ≀ 𝑅 ) ↔ ∃ 𝑢 ∈ dom 𝑅 ∃ 𝑥 ∈ [ 𝑢 ] 𝑅 𝐴 = [ 𝑥 ] ≀ 𝑅 ) ) ) |