This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for disjdmqseq , partim2 and petlem via disjdmqs , (general version of the former prtlem19 ). (Contributed by Peter Mazsa, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjlem19 | ⊢ ( 𝐴 ∈ 𝑉 → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝐴 ] ≀ 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjlem18 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V ) → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) ) ) | |
| 2 | 1 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) ) ) |
| 3 | 2 | imp31 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) |
| 4 | elecALTV | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑧 ∈ V ) → ( 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) | |
| 5 | 4 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ↔ 𝐴 ≀ 𝑅 𝑧 ) ) |
| 7 | 3 6 | bitr4d | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → ( 𝑧 ∈ [ 𝑥 ] 𝑅 ↔ 𝑧 ∈ [ 𝐴 ] ≀ 𝑅 ) ) |
| 8 | 7 | eqrdv | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ Disj 𝑅 ) ∧ ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) ) → [ 𝑥 ] 𝑅 = [ 𝐴 ] ≀ 𝑅 ) |
| 9 | 8 | exp31 | ⊢ ( 𝐴 ∈ 𝑉 → ( Disj 𝑅 → ( ( 𝑥 ∈ dom 𝑅 ∧ 𝐴 ∈ [ 𝑥 ] 𝑅 ) → [ 𝑥 ] 𝑅 = [ 𝐴 ] ≀ 𝑅 ) ) ) |