This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipsubdir.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| ipsubdir.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dipsubdi | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipsubdir.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | ipsubdir.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | id | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) | |
| 5 | 4 | 3com13 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 6 | id | ⊢ ( ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) | |
| 7 | 6 | 3com12 | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
| 8 | 1 2 3 | dipsubdir | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) = ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) |
| 10 | 9 | fveq2d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) ) |
| 11 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 12 | simpl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝑈 ∈ NrmCVec ) | |
| 13 | 1 2 | nvmcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ) |
| 14 | 13 | 3com23 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ) |
| 15 | 14 | 3adant3r3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ) |
| 16 | simpr3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 17 | 1 3 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 𝑀 𝐶 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) ) |
| 18 | 12 15 16 17 | syl3anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) ) |
| 19 | 11 18 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑀 𝐶 ) 𝑃 𝐴 ) ) = ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) ) |
| 20 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ ) |
| 21 | 20 | 3adant3r1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐴 ) ∈ ℂ ) |
| 22 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
| 23 | 22 | 3adant3r2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) |
| 24 | cjsub | ⊢ ( ( ( 𝐵 𝑃 𝐴 ) ∈ ℂ ∧ ( 𝐶 𝑃 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) − ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) − ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) ) |
| 26 | 1 3 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 27 | 26 | 3adant3r1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐵 ) ) |
| 28 | 1 3 | dipcj | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
| 29 | 28 | 3adant3r2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) = ( 𝐴 𝑃 𝐶 ) ) |
| 30 | 27 29 | oveq12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ∗ ‘ ( 𝐵 𝑃 𝐴 ) ) − ( ∗ ‘ ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
| 31 | 25 30 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
| 32 | 11 31 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ∗ ‘ ( ( 𝐵 𝑃 𝐴 ) − ( 𝐶 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
| 33 | 10 19 32 | 3eqtr3d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |
| 34 | 5 33 | sylan2 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 ( 𝐵 𝑀 𝐶 ) ) = ( ( 𝐴 𝑃 𝐵 ) − ( 𝐴 𝑃 𝐶 ) ) ) |