This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipsubdir.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| ipsubdir.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dipsubdir | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipsubdir.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | ipsubdir.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | idd | ⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) ) | |
| 5 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 6 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 8 | 1 7 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 9 | 6 8 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 10 | 5 9 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐵 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) |
| 11 | 10 | ex | ⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝐵 ∈ 𝑋 → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ) ) |
| 12 | idd | ⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝐶 ∈ 𝑋 → 𝐶 ∈ 𝑋 ) ) | |
| 13 | 4 11 12 | 3anim123d | ⊢ ( 𝑈 ∈ CPreHilOLD → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
| 15 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 16 | 1 15 3 | dipdir | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) ) |
| 17 | 14 16 | syldan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) ) |
| 18 | 1 15 7 2 | nvmval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 19 | 5 18 | syl3an1 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 20 | 19 | 3adant3r3 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑀 𝐵 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) 𝑃 𝐶 ) ) |
| 22 | 1 7 3 | dipass | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( - 1 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = ( - 1 · ( 𝐵 𝑃 𝐶 ) ) ) |
| 23 | 6 22 | mp3anr1 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = ( - 1 · ( 𝐵 𝑃 𝐶 ) ) ) |
| 24 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 25 | 24 | 3expb | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 26 | 5 25 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 27 | 26 | mulm1d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( - 1 · ( 𝐵 𝑃 𝐶 ) ) = - ( 𝐵 𝑃 𝐶 ) ) |
| 28 | 23 27 | eqtrd | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = - ( 𝐵 𝑃 𝐶 ) ) |
| 29 | 28 | 3adantr1 | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) = - ( 𝐵 𝑃 𝐶 ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) + - ( 𝐵 𝑃 𝐶 ) ) ) |
| 31 | 1 3 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐶 ) ∈ ℂ ) |
| 32 | 31 | 3adant3r2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝑃 𝐶 ) ∈ ℂ ) |
| 33 | 24 | 3adant3r1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝑃 𝐶 ) ∈ ℂ ) |
| 34 | 32 33 | negsubd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) + - ( 𝐵 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) ) |
| 35 | 5 34 | sylan | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) + - ( 𝐵 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) ) |
| 36 | 30 35 | eqtr2d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) = ( ( 𝐴 𝑃 𝐶 ) + ( ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) 𝑃 𝐶 ) ) ) |
| 37 | 17 21 36 | 3eqtr4d | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝑀 𝐵 ) 𝑃 𝐶 ) = ( ( 𝐴 𝑃 𝐶 ) − ( 𝐵 𝑃 𝐶 ) ) ) |