This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two integers modulo a positive integer equals zero iff the two integers are equal modulo the positive integer. (Contributed by AV, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difmod0 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 2 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 5 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 7 | 6 | eqcomd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 8 | 7 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) ) |
| 9 | 8 | eqeq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = 0 ↔ ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = 0 ) ) |
| 10 | znegcl | ⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) | |
| 11 | summodnegmod | ⊢ ( ( 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( - - 𝐵 mod 𝑁 ) ) ) | |
| 12 | 10 11 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 + - 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( - - 𝐵 mod 𝑁 ) ) ) |
| 13 | 2 | negnegd | ⊢ ( 𝐵 ∈ ℤ → - - 𝐵 = 𝐵 ) |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → - - 𝐵 = 𝐵 ) |
| 15 | 14 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( - - 𝐵 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 mod 𝑁 ) = ( - - 𝐵 mod 𝑁 ) ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |
| 17 | 9 12 16 | 3bitrd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 − 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( 𝐵 mod 𝑁 ) ) ) |