This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The difference of two integers modulo a positive integer equals zero iff the two integers are equal modulo the positive integer. (Contributed by AV, 15-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difmod0 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A - B ) mod N ) = 0 <-> ( A mod N ) = ( B mod N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 2 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 3 | 1 2 | anim12i | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. CC /\ B e. CC ) ) |
| 4 | 3 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A e. CC /\ B e. CC ) ) |
| 5 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A + -u B ) = ( A - B ) ) |
| 7 | 6 | eqcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( A - B ) = ( A + -u B ) ) |
| 8 | 7 | oveq1d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A - B ) mod N ) = ( ( A + -u B ) mod N ) ) |
| 9 | 8 | eqeq1d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A - B ) mod N ) = 0 <-> ( ( A + -u B ) mod N ) = 0 ) ) |
| 10 | znegcl | |- ( B e. ZZ -> -u B e. ZZ ) |
|
| 11 | summodnegmod | |- ( ( A e. ZZ /\ -u B e. ZZ /\ N e. NN ) -> ( ( ( A + -u B ) mod N ) = 0 <-> ( A mod N ) = ( -u -u B mod N ) ) ) |
|
| 12 | 10 11 | syl3an2 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A + -u B ) mod N ) = 0 <-> ( A mod N ) = ( -u -u B mod N ) ) ) |
| 13 | 2 | negnegd | |- ( B e. ZZ -> -u -u B = B ) |
| 14 | 13 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> -u -u B = B ) |
| 15 | 14 | oveq1d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( -u -u B mod N ) = ( B mod N ) ) |
| 16 | 15 | eqeq2d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( A mod N ) = ( -u -u B mod N ) <-> ( A mod N ) = ( B mod N ) ) ) |
| 17 | 9 12 16 | 3bitrd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN ) -> ( ( ( A - B ) mod N ) = 0 <-> ( A mod N ) = ( B mod N ) ) ) |