This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two integers modulo a positive integer equals zero iff the first of the two integers equals the negative of the other integer modulo the positive integer. (Contributed by AV, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | summodnegmod | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 + 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( - 𝐵 mod 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 3 | znegcl | ⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℤ ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → - 𝐵 ∈ ℤ ) |
| 5 | moddvds | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ - 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝑁 ) = ( - 𝐵 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝐴 − - 𝐵 ) ) ) | |
| 6 | 1 2 4 5 | syl3anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 mod 𝑁 ) = ( - 𝐵 mod 𝑁 ) ↔ 𝑁 ∥ ( 𝐴 − - 𝐵 ) ) ) |
| 7 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 8 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 9 | 7 8 | anim12i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 11 | subneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) ) | |
| 12 | 11 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) = ( 𝐴 − - 𝐵 ) ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 + 𝐵 ) = ( 𝐴 − - 𝐵 ) ) |
| 14 | 13 | breq2d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ ( 𝐴 + 𝐵 ) ↔ 𝑁 ∥ ( 𝐴 − - 𝐵 ) ) ) |
| 15 | zaddcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) | |
| 16 | 15 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 17 | dvdsval3 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝐴 + 𝐵 ) ↔ ( ( 𝐴 + 𝐵 ) mod 𝑁 ) = 0 ) ) | |
| 18 | 1 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∥ ( 𝐴 + 𝐵 ) ↔ ( ( 𝐴 + 𝐵 ) mod 𝑁 ) = 0 ) ) |
| 19 | 6 14 18 | 3bitr2rd | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 + 𝐵 ) mod 𝑁 ) = 0 ↔ ( 𝐴 mod 𝑁 ) = ( - 𝐵 mod 𝑁 ) ) ) |