This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constant multiplication in a modulo operation, see theorem 5.3 in ApostolNT p. 108. (Contributed by AV, 21-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmulconst | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( ( 𝐶 · 𝐴 ) mod ( 𝐶 · 𝑀 ) ) = ( ( 𝐶 · 𝐵 ) mod ( 𝐶 · 𝑀 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 3 | zsubcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) | |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
| 6 | nnz | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) | |
| 7 | nnne0 | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ≠ 0 ) | |
| 8 | 6 7 | jca | ⊢ ( 𝐶 ∈ ℕ → ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) |
| 11 | dvdscmulr | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) | |
| 12 | 11 | bicomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐶 ≠ 0 ) ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ) ) |
| 13 | 2 5 10 12 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ) ) |
| 14 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 15 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 16 | nncn | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) | |
| 17 | 14 15 16 | 3anim123i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 18 | 3anrot | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
| 20 | subdi | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · ( 𝐴 − 𝐵 ) ) = ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) |
| 23 | 22 | breq2d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐶 · 𝑀 ) ∥ ( 𝐶 · ( 𝐴 − 𝐵 ) ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 24 | 13 23 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝑀 ∥ ( 𝐴 − 𝐵 ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 25 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 26 | simp1 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) | |
| 27 | 26 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 28 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) | |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 30 | moddvds | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) | |
| 31 | 25 27 29 30 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ 𝑀 ∥ ( 𝐴 − 𝐵 ) ) ) |
| 32 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → 𝐶 ∈ ℕ ) | |
| 33 | 32 25 | nnmulcld | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · 𝑀 ) ∈ ℕ ) |
| 34 | 6 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
| 35 | 34 26 | zmulcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 · 𝐴 ) ∈ ℤ ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · 𝐴 ) ∈ ℤ ) |
| 37 | 34 28 | zmulcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 · 𝐵 ) ∈ ℤ ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( 𝐶 · 𝐵 ) ∈ ℤ ) |
| 39 | moddvds | ⊢ ( ( ( 𝐶 · 𝑀 ) ∈ ℕ ∧ ( 𝐶 · 𝐴 ) ∈ ℤ ∧ ( 𝐶 · 𝐵 ) ∈ ℤ ) → ( ( ( 𝐶 · 𝐴 ) mod ( 𝐶 · 𝑀 ) ) = ( ( 𝐶 · 𝐵 ) mod ( 𝐶 · 𝑀 ) ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) | |
| 40 | 33 36 38 39 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( ( 𝐶 · 𝐴 ) mod ( 𝐶 · 𝑀 ) ) = ( ( 𝐶 · 𝐵 ) mod ( 𝐶 · 𝑀 ) ) ↔ ( 𝐶 · 𝑀 ) ∥ ( ( 𝐶 · 𝐴 ) − ( 𝐶 · 𝐵 ) ) ) ) |
| 41 | 24 31 40 | 3bitr4d | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( ( 𝐶 · 𝐴 ) mod ( 𝐶 · 𝑀 ) ) = ( ( 𝐶 · 𝐵 ) mod ( 𝐶 · 𝑀 ) ) ) ) |