This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The object part of the diagonal functor is a bijection if D is terminal. So any functor from a terminal category is one-to-one correspondent to an object of the target base. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1o.a | |- A = ( Base ` C ) |
|
| diag1f1o.d | |- ( ph -> D e. TermCat ) |
||
| diag1f1o.c | |- ( ph -> C e. Cat ) |
||
| diag1f1o.l | |- L = ( C DiagFunc D ) |
||
| Assertion | diag1f1o | |- ( ph -> ( 1st ` L ) : A -1-1-onto-> ( D Func C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1o.a | |- A = ( Base ` C ) |
|
| 2 | diag1f1o.d | |- ( ph -> D e. TermCat ) |
|
| 3 | diag1f1o.c | |- ( ph -> C e. Cat ) |
|
| 4 | diag1f1o.l | |- L = ( C DiagFunc D ) |
|
| 5 | 2 | termccd | |- ( ph -> D e. Cat ) |
| 6 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 7 | 6 | istermc2 | |- ( D e. TermCat <-> ( D e. ThinCat /\ E! y y e. ( Base ` D ) ) ) |
| 8 | 2 7 | sylib | |- ( ph -> ( D e. ThinCat /\ E! y y e. ( Base ` D ) ) ) |
| 9 | 8 | simprd | |- ( ph -> E! y y e. ( Base ` D ) ) |
| 10 | euex | |- ( E! y y e. ( Base ` D ) -> E. y y e. ( Base ` D ) ) |
|
| 11 | 9 10 | syl | |- ( ph -> E. y y e. ( Base ` D ) ) |
| 12 | n0 | |- ( ( Base ` D ) =/= (/) <-> E. y y e. ( Base ` D ) ) |
|
| 13 | 11 12 | sylibr | |- ( ph -> ( Base ` D ) =/= (/) ) |
| 14 | 4 3 5 1 6 13 | diag1f1 | |- ( ph -> ( 1st ` L ) : A -1-1-> ( D Func C ) ) |
| 15 | f1f | |- ( ( 1st ` L ) : A -1-1-> ( D Func C ) -> ( 1st ` L ) : A --> ( D Func C ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( 1st ` L ) : A --> ( D Func C ) ) |
| 17 | 2 6 | termcbas | |- ( ph -> E. y ( Base ` D ) = { y } ) |
| 18 | 17 | adantr | |- ( ( ph /\ k e. ( D Func C ) ) -> E. y ( Base ` D ) = { y } ) |
| 19 | fveq2 | |- ( x = ( ( 1st ` k ) ` y ) -> ( ( 1st ` L ) ` x ) = ( ( 1st ` L ) ` ( ( 1st ` k ) ` y ) ) ) |
|
| 20 | 19 | eqeq2d | |- ( x = ( ( 1st ` k ) ` y ) -> ( k = ( ( 1st ` L ) ` x ) <-> k = ( ( 1st ` L ) ` ( ( 1st ` k ) ` y ) ) ) ) |
| 21 | 2 | ad2antrr | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> D e. TermCat ) |
| 22 | simplr | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> k e. ( D Func C ) ) |
|
| 23 | vsnid | |- y e. { y } |
|
| 24 | simpr | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> ( Base ` D ) = { y } ) |
|
| 25 | 23 24 | eleqtrrid | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> y e. ( Base ` D ) ) |
| 26 | eqid | |- ( ( 1st ` k ) ` y ) = ( ( 1st ` k ) ` y ) |
|
| 27 | 1 21 22 6 25 26 4 | diag1f1olem | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> ( ( ( 1st ` k ) ` y ) e. A /\ k = ( ( 1st ` L ) ` ( ( 1st ` k ) ` y ) ) ) ) |
| 28 | 27 | simpld | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> ( ( 1st ` k ) ` y ) e. A ) |
| 29 | 27 | simprd | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> k = ( ( 1st ` L ) ` ( ( 1st ` k ) ` y ) ) ) |
| 30 | 20 28 29 | rspcedvdw | |- ( ( ( ph /\ k e. ( D Func C ) ) /\ ( Base ` D ) = { y } ) -> E. x e. A k = ( ( 1st ` L ) ` x ) ) |
| 31 | 18 30 | exlimddv | |- ( ( ph /\ k e. ( D Func C ) ) -> E. x e. A k = ( ( 1st ` L ) ` x ) ) |
| 32 | 31 | ralrimiva | |- ( ph -> A. k e. ( D Func C ) E. x e. A k = ( ( 1st ` L ) ` x ) ) |
| 33 | dffo3 | |- ( ( 1st ` L ) : A -onto-> ( D Func C ) <-> ( ( 1st ` L ) : A --> ( D Func C ) /\ A. k e. ( D Func C ) E. x e. A k = ( ( 1st ` L ) ` x ) ) ) |
|
| 34 | 16 32 33 | sylanbrc | |- ( ph -> ( 1st ` L ) : A -onto-> ( D Func C ) ) |
| 35 | df-f1o | |- ( ( 1st ` L ) : A -1-1-onto-> ( D Func C ) <-> ( ( 1st ` L ) : A -1-1-> ( D Func C ) /\ ( 1st ` L ) : A -onto-> ( D Func C ) ) ) |
|
| 36 | 14 34 35 | sylanbrc | |- ( ph -> ( 1st ` L ) : A -1-1-onto-> ( D Func C ) ) |