This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of natural transformations for a terminal category. (Contributed by Zhi Wang, 21-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termcnatval.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| termcnatval.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | ||
| termcnatval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ) | ||
| termcnatval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| termcnatval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| termcnatval.r | ⊢ 𝑅 = ( 𝐴 ‘ 𝑋 ) | ||
| Assertion | termcnatval | ⊢ ( 𝜑 → 𝐴 = { 〈 𝑋 , 𝑅 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termcnatval.c | ⊢ ( 𝜑 → 𝐶 ∈ TermCat ) | |
| 2 | termcnatval.n | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 3 | termcnatval.a | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐹 𝑁 𝐺 ) ) | |
| 4 | termcnatval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 5 | termcnatval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | termcnatval.r | ⊢ 𝑅 = ( 𝐴 ‘ 𝑋 ) | |
| 7 | 2 3 | nat1st2nd | ⊢ ( 𝜑 → 𝐴 ∈ ( 〈 ( 1st ‘ 𝐹 ) , ( 2nd ‘ 𝐹 ) 〉 𝑁 〈 ( 1st ‘ 𝐺 ) , ( 2nd ‘ 𝐺 ) 〉 ) ) |
| 8 | 2 7 4 | natfn | ⊢ ( 𝜑 → 𝐴 Fn 𝐵 ) |
| 9 | 1 4 5 | termcbas2 | ⊢ ( 𝜑 → 𝐵 = { 𝑋 } ) |
| 10 | 9 | fneq2d | ⊢ ( 𝜑 → ( 𝐴 Fn 𝐵 ↔ 𝐴 Fn { 𝑋 } ) ) |
| 11 | 8 10 | mpbid | ⊢ ( 𝜑 → 𝐴 Fn { 𝑋 } ) |
| 12 | fnsnbg | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝐴 Fn { 𝑋 } ↔ 𝐴 = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } ) ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → ( 𝐴 Fn { 𝑋 } ↔ 𝐴 = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } ) ) |
| 14 | 11 13 | mpbid | ⊢ ( 𝜑 → 𝐴 = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } ) |
| 15 | 6 | opeq2i | ⊢ 〈 𝑋 , 𝑅 〉 = 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 |
| 16 | 15 | sneqi | ⊢ { 〈 𝑋 , 𝑅 〉 } = { 〈 𝑋 , ( 𝐴 ‘ 𝑋 ) 〉 } |
| 17 | 14 16 | eqtr4di | ⊢ ( 𝜑 → 𝐴 = { 〈 𝑋 , 𝑅 〉 } ) |