This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The object part of the diagonal functor is 1-1 if B is non-empty. (Contributed by Zhi Wang, 19-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | diag1f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| diag1f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| diag1f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| diag1f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | ||
| diag1f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | ||
| diag1f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| Assertion | diag1f1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | diag1f1.l | ⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) | |
| 2 | diag1f1.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 3 | diag1f1.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 4 | diag1f1.a | ⊢ 𝐴 = ( Base ‘ 𝐶 ) | |
| 5 | diag1f1.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 6 | diag1f1.0 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 7 | eqid | ⊢ ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 ) | |
| 8 | 7 | fucbas | ⊢ ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) ) |
| 9 | 1 2 3 7 | diagcl | ⊢ ( 𝜑 → 𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ) |
| 10 | 9 | func1st2nd | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd ‘ 𝐿 ) ) |
| 11 | 4 8 10 | funcf1 | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ) |
| 12 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐶 ∈ Cat ) |
| 13 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐷 ∈ Cat ) |
| 14 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝐵 ≠ ∅ ) |
| 15 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ 𝐴 ) | |
| 16 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) | |
| 17 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) | |
| 18 | eqid | ⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) | |
| 19 | 1 12 13 4 5 14 15 16 17 18 | diag1f1lem | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 20 | 19 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 21 | dff13 | ⊢ ( ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) ↔ ( ( 1st ‘ 𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( ( 1st ‘ 𝐿 ) ‘ 𝑥 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 22 | 11 20 21 | sylanbrc | ⊢ ( 𝜑 → ( 1st ‘ 𝐿 ) : 𝐴 –1-1→ ( 𝐷 Func 𝐶 ) ) |