This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfon2 . Two sets satisfying the new definition also satisfy trichotomy with respect to e. . (Contributed by Scott Fenton, 25-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfon2lem5.1 | |- A e. _V |
|
| dfon2lem5.2 | |- B e. _V |
||
| Assertion | dfon2lem5 | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( A e. B \/ A = B \/ B e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfon2lem5.1 | |- A e. _V |
|
| 2 | dfon2lem5.2 | |- B e. _V |
|
| 3 | 1 2 | dfon2lem4 | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( A C_ B \/ B C_ A ) ) |
| 4 | dfpss2 | |- ( A C. B <-> ( A C_ B /\ -. A = B ) ) |
|
| 5 | dfpss2 | |- ( B C. A <-> ( B C_ A /\ -. B = A ) ) |
|
| 6 | eqcom | |- ( B = A <-> A = B ) |
|
| 7 | 6 | notbii | |- ( -. B = A <-> -. A = B ) |
| 8 | 7 | anbi2i | |- ( ( B C_ A /\ -. B = A ) <-> ( B C_ A /\ -. A = B ) ) |
| 9 | 5 8 | bitri | |- ( B C. A <-> ( B C_ A /\ -. A = B ) ) |
| 10 | 4 9 | orbi12i | |- ( ( A C. B \/ B C. A ) <-> ( ( A C_ B /\ -. A = B ) \/ ( B C_ A /\ -. A = B ) ) ) |
| 11 | andir | |- ( ( ( A C_ B \/ B C_ A ) /\ -. A = B ) <-> ( ( A C_ B /\ -. A = B ) \/ ( B C_ A /\ -. A = B ) ) ) |
|
| 12 | 10 11 | bitr4i | |- ( ( A C. B \/ B C. A ) <-> ( ( A C_ B \/ B C_ A ) /\ -. A = B ) ) |
| 13 | orcom | |- ( ( A C. B \/ B C. A ) <-> ( B C. A \/ A C. B ) ) |
|
| 14 | dfon2lem3 | |- ( B e. _V -> ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> ( Tr B /\ A. z e. B -. z e. z ) ) ) |
|
| 15 | 2 14 | ax-mp | |- ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> ( Tr B /\ A. z e. B -. z e. z ) ) |
| 16 | 15 | simpld | |- ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> Tr B ) |
| 17 | psseq1 | |- ( x = B -> ( x C. A <-> B C. A ) ) |
|
| 18 | treq | |- ( x = B -> ( Tr x <-> Tr B ) ) |
|
| 19 | 17 18 | anbi12d | |- ( x = B -> ( ( x C. A /\ Tr x ) <-> ( B C. A /\ Tr B ) ) ) |
| 20 | eleq1 | |- ( x = B -> ( x e. A <-> B e. A ) ) |
|
| 21 | 19 20 | imbi12d | |- ( x = B -> ( ( ( x C. A /\ Tr x ) -> x e. A ) <-> ( ( B C. A /\ Tr B ) -> B e. A ) ) ) |
| 22 | 2 21 | spcv | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( ( B C. A /\ Tr B ) -> B e. A ) ) |
| 23 | 22 | expcomd | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( Tr B -> ( B C. A -> B e. A ) ) ) |
| 24 | 23 | imp | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ Tr B ) -> ( B C. A -> B e. A ) ) |
| 25 | 16 24 | sylan2 | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( B C. A -> B e. A ) ) |
| 26 | dfon2lem3 | |- ( A e. _V -> ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( Tr A /\ A. z e. A -. z e. z ) ) ) |
|
| 27 | 1 26 | ax-mp | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> ( Tr A /\ A. z e. A -. z e. z ) ) |
| 28 | 27 | simpld | |- ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) -> Tr A ) |
| 29 | psseq1 | |- ( y = A -> ( y C. B <-> A C. B ) ) |
|
| 30 | treq | |- ( y = A -> ( Tr y <-> Tr A ) ) |
|
| 31 | 29 30 | anbi12d | |- ( y = A -> ( ( y C. B /\ Tr y ) <-> ( A C. B /\ Tr A ) ) ) |
| 32 | eleq1 | |- ( y = A -> ( y e. B <-> A e. B ) ) |
|
| 33 | 31 32 | imbi12d | |- ( y = A -> ( ( ( y C. B /\ Tr y ) -> y e. B ) <-> ( ( A C. B /\ Tr A ) -> A e. B ) ) ) |
| 34 | 1 33 | spcv | |- ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> ( ( A C. B /\ Tr A ) -> A e. B ) ) |
| 35 | 34 | expcomd | |- ( A. y ( ( y C. B /\ Tr y ) -> y e. B ) -> ( Tr A -> ( A C. B -> A e. B ) ) ) |
| 36 | 28 35 | mpan9 | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( A C. B -> A e. B ) ) |
| 37 | 25 36 | orim12d | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( B C. A \/ A C. B ) -> ( B e. A \/ A e. B ) ) ) |
| 38 | 13 37 | biimtrid | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( A C. B \/ B C. A ) -> ( B e. A \/ A e. B ) ) ) |
| 39 | 12 38 | biimtrrid | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( ( ( A C_ B \/ B C_ A ) /\ -. A = B ) -> ( B e. A \/ A e. B ) ) ) |
| 40 | 3 39 | mpand | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( -. A = B -> ( B e. A \/ A e. B ) ) ) |
| 41 | 3orrot | |- ( ( A e. B \/ A = B \/ B e. A ) <-> ( A = B \/ B e. A \/ A e. B ) ) |
|
| 42 | 3orass | |- ( ( A = B \/ B e. A \/ A e. B ) <-> ( A = B \/ ( B e. A \/ A e. B ) ) ) |
|
| 43 | df-or | |- ( ( A = B \/ ( B e. A \/ A e. B ) ) <-> ( -. A = B -> ( B e. A \/ A e. B ) ) ) |
|
| 44 | 42 43 | bitri | |- ( ( A = B \/ B e. A \/ A e. B ) <-> ( -. A = B -> ( B e. A \/ A e. B ) ) ) |
| 45 | 41 44 | bitri | |- ( ( A e. B \/ A = B \/ B e. A ) <-> ( -. A = B -> ( B e. A \/ A e. B ) ) ) |
| 46 | 40 45 | sylibr | |- ( ( A. x ( ( x C. A /\ Tr x ) -> x e. A ) /\ A. y ( ( y C. B /\ Tr y ) -> y e. B ) ) -> ( A e. B \/ A = B \/ B e. A ) ) |