This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of dffr2 , which avoids ax-8 but requires ax-10 , ax-11 , ax-12 . (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr2ALT | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) | |
| 2 | rabeq0 | ⊢ ( { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ↔ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) |
| 4 | 3 | imbi2i | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 𝑅 𝑦 ) ) |
| 6 | 1 5 | bitr4i | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |