This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of dffr2 , which avoids ax-8 but requires ax-10 , ax-11 , ax-12 . (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr2ALT | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fr | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
|
| 2 | rabeq0 | |- ( { z e. x | z R y } = (/) <-> A. z e. x -. z R y ) |
|
| 3 | 2 | rexbii | |- ( E. y e. x { z e. x | z R y } = (/) <-> E. y e. x A. z e. x -. z R y ) |
| 4 | 3 | imbi2i | |- ( ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
| 5 | 4 | albii | |- ( A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x A. z e. x -. z R y ) ) |
| 6 | 1 5 | bitr4i | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |