This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 19-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frc.1 | ⊢ 𝐵 ∈ V | |
| Assertion | frc | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frc.1 | ⊢ 𝐵 ∈ V | |
| 2 | fri | ⊢ ( ( ( 𝐵 ∈ V ∧ 𝑅 Fr 𝐴 ) ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑥 ) | |
| 3 | 1 2 | mpanl1 | ⊢ ( ( 𝑅 Fr 𝐴 ∧ ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑥 ) |
| 4 | 3 | 3impb | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑥 ) |
| 5 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) | |
| 6 | 5 | rabeq0w | ⊢ ( { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } = ∅ ↔ ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑥 ) |
| 7 | 6 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } = ∅ ↔ ∃ 𝑥 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ¬ 𝑧 𝑅 𝑥 ) |
| 8 | 4 7 | sylibr | ⊢ ( ( 𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐵 { 𝑦 ∈ 𝐵 ∣ 𝑦 𝑅 𝑥 } = ∅ ) |