This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 17-Feb-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Mario Carneiro, 23-Jun-2015) Avoid ax-10 , ax-11 , ax-12 , but use ax-8 . (Revised by GG, 3-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr2 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fr | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ¬ 𝑤 𝑅 𝑦 ) ) | |
| 2 | breq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝑅 𝑦 ↔ 𝑤 𝑅 𝑦 ) ) | |
| 3 | 2 | rabeq0w | ⊢ ( { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ↔ ∀ 𝑤 ∈ 𝑥 ¬ 𝑤 𝑅 𝑦 ) |
| 4 | 3 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ↔ ∃ 𝑦 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ¬ 𝑤 𝑅 𝑦 ) |
| 5 | 4 | imbi2i | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ¬ 𝑤 𝑅 𝑦 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ¬ 𝑤 𝑅 𝑦 ) ) |
| 7 | 1 6 | bitr4i | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |