This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Founded and well-ordering relations
dffr2ALT
Metamath Proof Explorer
Description: Alternate proof of dffr2 , which avoids ax-8 but requires ax-10 ,
ax-11 , ax-12 . (Contributed by NM , 17-Feb-2004) (Proof shortened by Andrew Salmon , 27-Aug-2011) (Proof shortened by Mario Carneiro , 23-Jun-2015) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
dffr2ALT
⊢ R Fr A ↔ ∀ x x ⊆ A ∧ x ≠ ∅ → ∃ y ∈ x z ∈ x | z R y = ∅
Proof
Step
Hyp
Ref
Expression
1
df-fr
⊢ R Fr A ↔ ∀ x x ⊆ A ∧ x ≠ ∅ → ∃ y ∈ x ∀ z ∈ x ¬ z R y
2
rabeq0
⊢ z ∈ x | z R y = ∅ ↔ ∀ z ∈ x ¬ z R y
3
2
rexbii
⊢ ∃ y ∈ x z ∈ x | z R y = ∅ ↔ ∃ y ∈ x ∀ z ∈ x ¬ z R y
4
3
imbi2i
⊢ x ⊆ A ∧ x ≠ ∅ → ∃ y ∈ x z ∈ x | z R y = ∅ ↔ x ⊆ A ∧ x ≠ ∅ → ∃ y ∈ x ∀ z ∈ x ¬ z R y
5
4
albii
⊢ ∀ x x ⊆ A ∧ x ≠ ∅ → ∃ y ∈ x z ∈ x | z R y = ∅ ↔ ∀ x x ⊆ A ∧ x ≠ ∅ → ∃ y ∈ x ∀ z ∈ x ¬ z R y
6
1 5
bitr4i
⊢ R Fr A ↔ ∀ x x ⊆ A ∧ x ≠ ∅ → ∃ y ∈ x z ∈ x | z R y = ∅