This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfbigcup2 | ⊢ Bigcup = ( 𝑥 ∈ V ↦ ∪ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbigcup | ⊢ Rel Bigcup | |
| 2 | mptrel | ⊢ Rel ( 𝑥 ∈ V ↦ ∪ 𝑥 ) | |
| 3 | eqcom | ⊢ ( ∪ 𝑦 = 𝑧 ↔ 𝑧 = ∪ 𝑦 ) | |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | 4 | brbigcup | ⊢ ( 𝑦 Bigcup 𝑧 ↔ ∪ 𝑦 = 𝑧 ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ V ↔ 𝑦 ∈ V ) ) | |
| 8 | unieq | ⊢ ( 𝑥 = 𝑦 → ∪ 𝑥 = ∪ 𝑦 ) | |
| 9 | 8 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑡 = ∪ 𝑥 ↔ 𝑡 = ∪ 𝑦 ) ) |
| 10 | 7 9 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥 ) ↔ ( 𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦 ) ) ) |
| 11 | 6 | biantrur | ⊢ ( 𝑡 = ∪ 𝑦 ↔ ( 𝑦 ∈ V ∧ 𝑡 = ∪ 𝑦 ) ) |
| 12 | 10 11 | bitr4di | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥 ) ↔ 𝑡 = ∪ 𝑦 ) ) |
| 13 | eqeq1 | ⊢ ( 𝑡 = 𝑧 → ( 𝑡 = ∪ 𝑦 ↔ 𝑧 = ∪ 𝑦 ) ) | |
| 14 | df-mpt | ⊢ ( 𝑥 ∈ V ↦ ∪ 𝑥 ) = { 〈 𝑥 , 𝑡 〉 ∣ ( 𝑥 ∈ V ∧ 𝑡 = ∪ 𝑥 ) } | |
| 15 | 6 4 12 13 14 | brab | ⊢ ( 𝑦 ( 𝑥 ∈ V ↦ ∪ 𝑥 ) 𝑧 ↔ 𝑧 = ∪ 𝑦 ) |
| 16 | 3 5 15 | 3bitr4i | ⊢ ( 𝑦 Bigcup 𝑧 ↔ 𝑦 ( 𝑥 ∈ V ↦ ∪ 𝑥 ) 𝑧 ) |
| 17 | 1 2 16 | eqbrriv | ⊢ Bigcup = ( 𝑥 ∈ V ↦ ∪ 𝑥 ) |