This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bigcup maps the universe onto itself. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fobigcup | ⊢ Bigcup : V –onto→ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg | ⊢ ( 𝑥 ∈ V → ∪ 𝑥 ∈ V ) | |
| 2 | 1 | rgen | ⊢ ∀ 𝑥 ∈ V ∪ 𝑥 ∈ V |
| 3 | dfbigcup2 | ⊢ Bigcup = ( 𝑥 ∈ V ↦ ∪ 𝑥 ) | |
| 4 | 3 | mptfng | ⊢ ( ∀ 𝑥 ∈ V ∪ 𝑥 ∈ V ↔ Bigcup Fn V ) |
| 5 | 2 4 | mpbi | ⊢ Bigcup Fn V |
| 6 | 3 | rnmpt | ⊢ ran Bigcup = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 } |
| 7 | vex | ⊢ 𝑦 ∈ V | |
| 8 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 9 | unisnv | ⊢ ∪ { 𝑦 } = 𝑦 | |
| 10 | 9 | eqcomi | ⊢ 𝑦 = ∪ { 𝑦 } |
| 11 | unieq | ⊢ ( 𝑥 = { 𝑦 } → ∪ 𝑥 = ∪ { 𝑦 } ) | |
| 12 | 11 | rspceeqv | ⊢ ( ( { 𝑦 } ∈ V ∧ 𝑦 = ∪ { 𝑦 } ) → ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 ) |
| 13 | 8 10 12 | mp2an | ⊢ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 |
| 14 | 7 13 | 2th | ⊢ ( 𝑦 ∈ V ↔ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 ) |
| 15 | 14 | eqabi | ⊢ V = { 𝑦 ∣ ∃ 𝑥 ∈ V 𝑦 = ∪ 𝑥 } |
| 16 | 6 15 | eqtr4i | ⊢ ran Bigcup = V |
| 17 | df-fo | ⊢ ( Bigcup : V –onto→ V ↔ ( Bigcup Fn V ∧ ran Bigcup = V ) ) | |
| 18 | 5 16 17 | mpbir2an | ⊢ Bigcup : V –onto→ V |