This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfbigcup2 | |- Bigcup = ( x e. _V |-> U. x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relbigcup | |- Rel Bigcup |
|
| 2 | mptrel | |- Rel ( x e. _V |-> U. x ) |
|
| 3 | eqcom | |- ( U. y = z <-> z = U. y ) |
|
| 4 | vex | |- z e. _V |
|
| 5 | 4 | brbigcup | |- ( y Bigcup z <-> U. y = z ) |
| 6 | vex | |- y e. _V |
|
| 7 | eleq1w | |- ( x = y -> ( x e. _V <-> y e. _V ) ) |
|
| 8 | unieq | |- ( x = y -> U. x = U. y ) |
|
| 9 | 8 | eqeq2d | |- ( x = y -> ( t = U. x <-> t = U. y ) ) |
| 10 | 7 9 | anbi12d | |- ( x = y -> ( ( x e. _V /\ t = U. x ) <-> ( y e. _V /\ t = U. y ) ) ) |
| 11 | 6 | biantrur | |- ( t = U. y <-> ( y e. _V /\ t = U. y ) ) |
| 12 | 10 11 | bitr4di | |- ( x = y -> ( ( x e. _V /\ t = U. x ) <-> t = U. y ) ) |
| 13 | eqeq1 | |- ( t = z -> ( t = U. y <-> z = U. y ) ) |
|
| 14 | df-mpt | |- ( x e. _V |-> U. x ) = { <. x , t >. | ( x e. _V /\ t = U. x ) } |
|
| 15 | 6 4 12 13 14 | brab | |- ( y ( x e. _V |-> U. x ) z <-> z = U. y ) |
| 16 | 3 5 15 | 3bitr4i | |- ( y Bigcup z <-> y ( x e. _V |-> U. x ) z ) |
| 17 | 1 2 16 | eqbrriv | |- Bigcup = ( x e. _V |-> U. x ) |