This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of the Axiom of Choice and Maes' AC ackm . The proof consists of lemmas kmlem1 through kmlem16 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e., replacing dfac5 with biid ) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfackm | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5 | ⊢ ( CHOICE ↔ ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 2 | eqid | ⊢ { 𝑡 ∣ ∃ ℎ ∈ 𝑥 𝑡 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) } = { 𝑡 ∣ ∃ ℎ ∈ 𝑥 𝑡 = ( ℎ ∖ ∪ ( 𝑥 ∖ { ℎ } ) ) } | |
| 3 | 2 | kmlem13 | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 4 | kmlem8 | ⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( ¬ ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑥 ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 6 | 3 5 | bitri | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 7 | df-ne | ⊢ ( 𝑦 ≠ 𝑣 ↔ ¬ 𝑦 = 𝑣 ) | |
| 8 | 7 | bicomi | ⊢ ( ¬ 𝑦 = 𝑣 ↔ 𝑦 ≠ 𝑣 ) |
| 9 | 8 | anbi2i | ⊢ ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ↔ ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ) |
| 10 | 9 | anbi1i | ⊢ ( ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) |
| 11 | 10 | imbi2i | ⊢ ( ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) |
| 12 | biid | ⊢ ( ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | |
| 13 | biid | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) | |
| 14 | 11 12 13 | kmlem16 | ⊢ ( ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) ) |
| 15 | 14 | albii | ⊢ ( ∀ 𝑥 ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) ) |
| 16 | 6 15 | bitri | ⊢ ( ∀ 𝑥 ( ( ∀ 𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 → ( 𝑧 ∩ 𝑤 ) = ∅ ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) ) |
| 17 | 1 16 | bitri | ⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) ) ) |