This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kmlem14.1 | ⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) | |
| kmlem14.2 | ⊢ ( 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | ||
| kmlem14.3 | ⊢ ( 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) | ||
| Assertion | kmlem16 | ⊢ ( ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kmlem14.1 | ⊢ ( 𝜑 ↔ ( 𝑧 ∈ 𝑦 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣 ) ∧ 𝑧 ∈ 𝑣 ) ) ) | |
| 2 | kmlem14.2 | ⊢ ( 𝜓 ↔ ( 𝑧 ∈ 𝑥 → ( ( 𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦 ) ∧ ( ( 𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦 ) → 𝑢 = 𝑣 ) ) ) ) | |
| 3 | kmlem14.3 | ⊢ ( 𝜒 ↔ ∀ 𝑧 ∈ 𝑥 ∃! 𝑣 𝑣 ∈ ( 𝑧 ∩ 𝑦 ) ) | |
| 4 | 1 2 3 | kmlem14 | ⊢ ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ) |
| 5 | 1 2 3 | kmlem15 | ⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 7 | 4 6 | orbi12i | ⊢ ( ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 8 | 19.43 | ⊢ ( ∃ 𝑦 ( ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) | |
| 9 | pm3.24 | ⊢ ¬ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) | |
| 10 | simpl | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) | |
| 11 | 10 | sps | ⊢ ( ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) |
| 12 | 11 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) |
| 13 | simpl | ⊢ ( ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) → ¬ 𝑦 ∈ 𝑥 ) | |
| 14 | 13 | sps | ⊢ ( ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) → ¬ 𝑦 ∈ 𝑥 ) |
| 15 | 14 | exlimivv | ⊢ ( ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) → ¬ 𝑦 ∈ 𝑥 ) |
| 16 | 12 15 | anim12i | ⊢ ( ( ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∧ ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) → ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
| 17 | 9 16 | mto | ⊢ ¬ ( ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∧ ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 18 | 19.33b | ⊢ ( ¬ ( ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∧ ∃ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) → ( ∀ 𝑧 ( ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ( ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ∀ 𝑧 ( ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ( ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 20 | 10 | exlimiv | ⊢ ( ∃ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) → 𝑦 ∈ 𝑥 ) |
| 21 | 13 | exlimiv | ⊢ ( ∃ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) → ¬ 𝑦 ∈ 𝑥 ) |
| 22 | 20 21 | anim12i | ⊢ ( ( ∃ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∧ ∃ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) → ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑥 ) ) |
| 23 | 9 22 | mto | ⊢ ¬ ( ∃ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∧ ∃ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) |
| 24 | 19.33b | ⊢ ( ¬ ( ∃ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∧ ∃ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) → ( ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ( ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) ) | |
| 25 | 23 24 | ax-mp | ⊢ ( ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ( ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 26 | 25 | exbii | ⊢ ( ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ∃ 𝑣 ( ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 27 | 19.43 | ⊢ ( ∃ 𝑣 ( ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ( ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) | |
| 28 | 26 27 | bitr2i | ⊢ ( ( ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 29 | 28 | albii | ⊢ ( ∀ 𝑧 ( ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 30 | 19 29 | bitr3i | ⊢ ( ( ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 31 | 30 | exbii | ⊢ ( ∃ 𝑦 ( ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |
| 32 | 7 8 31 | 3bitr2i | ⊢ ( ( ∃ 𝑧 ∈ 𝑥 ∀ 𝑣 ∈ 𝑧 ∃ 𝑤 ∈ 𝑥 ( 𝑧 ≠ 𝑤 ∧ 𝑣 ∈ ( 𝑧 ∩ 𝑤 ) ) ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜒 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ∃ 𝑣 ∀ 𝑢 ( ( 𝑦 ∈ 𝑥 ∧ 𝜑 ) ∨ ( ¬ 𝑦 ∈ 𝑥 ∧ 𝜓 ) ) ) |