This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem8 | ⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralnex | ⊢ ( ∀ 𝑧 ∈ 𝑢 ¬ ∀ 𝑤 ∈ 𝑧 𝜓 ↔ ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑤 ∈ 𝑧 ¬ 𝜓 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) ) | |
| 3 | rexnal | ⊢ ( ∃ 𝑤 ∈ 𝑧 ¬ 𝜓 ↔ ¬ ∀ 𝑤 ∈ 𝑧 𝜓 ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) ↔ ¬ ∀ 𝑤 ∈ 𝑧 𝜓 ) |
| 5 | exsimpl | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) → ∃ 𝑤 𝑤 ∈ 𝑧 ) | |
| 6 | n0 | ⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑧 ) | |
| 7 | 5 6 | sylibr | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑧 ∧ ¬ 𝜓 ) → 𝑧 ≠ ∅ ) |
| 8 | 4 7 | sylbir | ⊢ ( ¬ ∀ 𝑤 ∈ 𝑧 𝜓 → 𝑧 ≠ ∅ ) |
| 9 | 8 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑢 ¬ ∀ 𝑤 ∈ 𝑧 𝜓 → ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ ) |
| 10 | 1 9 | sylbir | ⊢ ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ ) |
| 11 | kmlem2 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 12 | biimt | ⊢ ( 𝑧 ≠ ∅ → ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 13 | 12 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ∀ 𝑧 ∈ 𝑢 ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 14 | ralbi | ⊢ ( ∀ 𝑧 ∈ 𝑢 ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ( ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 16 | 15 | anbi2d | ⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) ) |
| 17 | 16 | exbidv | ⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) ) |
| 18 | 11 17 | bitr4id | ⊢ ( ∀ 𝑧 ∈ 𝑢 𝑧 ≠ ∅ → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 19 | 10 18 | syl | ⊢ ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 20 | 19 | pm5.74i | ⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 21 | pm4.64 | ⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) | |
| 22 | 20 21 | bitri | ⊢ ( ( ¬ ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 → ∃ 𝑦 ∀ 𝑧 ∈ 𝑢 ( 𝑧 ≠ ∅ → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ∃ 𝑧 ∈ 𝑢 ∀ 𝑤 ∈ 𝑧 𝜓 ∨ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑢 ∧ ∀ 𝑧 ∈ 𝑢 ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |