This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac8b | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑥 𝑥 We 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) | |
| 2 | bren | ⊢ ( ( card ‘ 𝐴 ) ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ( card ‘ 𝐴 ) –1-1-onto→ 𝐴 ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑓 𝑓 : ( card ‘ 𝐴 ) –1-1-onto→ 𝐴 ) |
| 4 | sqxpexg | ⊢ ( 𝐴 ∈ dom card → ( 𝐴 × 𝐴 ) ∈ V ) | |
| 5 | incom | ⊢ ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) = ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ) | |
| 6 | inex1g | ⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( ( 𝐴 × 𝐴 ) ∩ { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ) ∈ V ) | |
| 7 | 5 6 | eqeltrid | ⊢ ( ( 𝐴 × 𝐴 ) ∈ V → ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 8 | 4 7 | syl | ⊢ ( 𝐴 ∈ dom card → ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 9 | f1ocnv | ⊢ ( 𝑓 : ( card ‘ 𝐴 ) –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1-onto→ ( card ‘ 𝐴 ) ) | |
| 10 | cardon | ⊢ ( card ‘ 𝐴 ) ∈ On | |
| 11 | 10 | onordi | ⊢ Ord ( card ‘ 𝐴 ) |
| 12 | ordwe | ⊢ ( Ord ( card ‘ 𝐴 ) → E We ( card ‘ 𝐴 ) ) | |
| 13 | 11 12 | ax-mp | ⊢ E We ( card ‘ 𝐴 ) |
| 14 | eqid | ⊢ { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } = { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } | |
| 15 | 14 | f1owe | ⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ ( card ‘ 𝐴 ) → ( E We ( card ‘ 𝐴 ) → { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } We 𝐴 ) ) |
| 16 | 9 13 15 | mpisyl | ⊢ ( 𝑓 : ( card ‘ 𝐴 ) –1-1-onto→ 𝐴 → { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } We 𝐴 ) |
| 17 | weinxp | ⊢ ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } We 𝐴 ↔ ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) | |
| 18 | 16 17 | sylib | ⊢ ( 𝑓 : ( card ‘ 𝐴 ) –1-1-onto→ 𝐴 → ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) |
| 19 | weeq1 | ⊢ ( 𝑥 = ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑥 We 𝐴 ↔ ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 ) ) | |
| 20 | 19 | spcegv | ⊢ ( ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ( { 〈 𝑧 , 𝑤 〉 ∣ ( ◡ 𝑓 ‘ 𝑧 ) E ( ◡ 𝑓 ‘ 𝑤 ) } ∩ ( 𝐴 × 𝐴 ) ) We 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 21 | 8 18 20 | syl2im | ⊢ ( 𝐴 ∈ dom card → ( 𝑓 : ( card ‘ 𝐴 ) –1-1-onto→ 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 22 | 21 | exlimdv | ⊢ ( 𝐴 ∈ dom card → ( ∃ 𝑓 𝑓 : ( card ‘ 𝐴 ) –1-1-onto→ 𝐴 → ∃ 𝑥 𝑥 We 𝐴 ) ) |
| 23 | 3 22 | mpd | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑥 𝑥 We 𝐴 ) |