This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac8c . (Contributed by Mario Carneiro, 10-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfac8clem.1 | ⊢ 𝐹 = ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) | |
| Assertion | dfac8clem | ⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑟 𝑟 We ∪ 𝐴 → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac8clem.1 | ⊢ 𝐹 = ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) | |
| 2 | eldifsn | ⊢ ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) | |
| 3 | elssuni | ⊢ ( 𝑠 ∈ 𝐴 → 𝑠 ⊆ ∪ 𝐴 ) | |
| 4 | 3 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑠 ⊆ ∪ 𝐴 ) |
| 5 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑟 We ∪ 𝐴 ) | |
| 6 | vex | ⊢ 𝑟 ∈ V | |
| 7 | exse2 | ⊢ ( 𝑟 ∈ V → 𝑟 Se ∪ 𝐴 ) | |
| 8 | 6 7 | mp1i | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑟 Se ∪ 𝐴 ) |
| 9 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → 𝑠 ≠ ∅ ) | |
| 10 | wereu2 | ⊢ ( ( ( 𝑟 We ∪ 𝐴 ∧ 𝑟 Se ∪ 𝐴 ) ∧ ( 𝑠 ⊆ ∪ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ∃! 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) | |
| 11 | 5 8 4 9 10 | syl22anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ∃! 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) |
| 12 | riotacl | ⊢ ( ∃! 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ 𝑠 ) | |
| 13 | 11 12 | syl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ 𝑠 ) |
| 14 | 4 13 | sseldd | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ ∪ 𝐴 ) |
| 15 | 2 14 | sylan2b | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ) → ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ ∪ 𝐴 ) |
| 16 | 15 1 | fmptd | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → 𝐹 : ( 𝐴 ∖ { ∅ } ) ⟶ ∪ 𝐴 ) |
| 17 | difexg | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∖ { ∅ } ) ∈ V ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ( 𝐴 ∖ { ∅ } ) ∈ V ) |
| 19 | uniexg | ⊢ ( 𝐴 ∈ 𝐵 → ∪ 𝐴 ∈ V ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∪ 𝐴 ∈ V ) |
| 21 | fex2 | ⊢ ( ( 𝐹 : ( 𝐴 ∖ { ∅ } ) ⟶ ∪ 𝐴 ∧ ( 𝐴 ∖ { ∅ } ) ∈ V ∧ ∪ 𝐴 ∈ V ) → 𝐹 ∈ V ) | |
| 22 | 16 18 20 21 | syl3anc | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → 𝐹 ∈ V ) |
| 23 | riotaex | ⊢ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ V | |
| 24 | 1 | fvmpt2 | ⊢ ( ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ∧ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ∈ V ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
| 25 | 23 24 | mpan2 | ⊢ ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
| 26 | 2 25 | sylbir | ⊢ ( ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
| 27 | 26 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑠 ) = ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) |
| 28 | 27 13 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ ( 𝑠 ∈ 𝐴 ∧ 𝑠 ≠ ∅ ) ) → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) |
| 29 | 28 | expr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
| 30 | 29 | ralrimiva | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∀ 𝑠 ∈ 𝐴 ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
| 31 | nfv | ⊢ Ⅎ 𝑠 𝑧 ≠ ∅ | |
| 32 | nfmpt1 | ⊢ Ⅎ 𝑠 ( 𝑠 ∈ ( 𝐴 ∖ { ∅ } ) ↦ ( ℩ 𝑎 ∈ 𝑠 ∀ 𝑏 ∈ 𝑠 ¬ 𝑏 𝑟 𝑎 ) ) | |
| 33 | 1 32 | nfcxfr | ⊢ Ⅎ 𝑠 𝐹 |
| 34 | nfcv | ⊢ Ⅎ 𝑠 𝑧 | |
| 35 | 33 34 | nffv | ⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑧 ) |
| 36 | 35 | nfel1 | ⊢ Ⅎ 𝑠 ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 |
| 37 | 31 36 | nfim | ⊢ Ⅎ 𝑠 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) |
| 38 | nfv | ⊢ Ⅎ 𝑧 ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) | |
| 39 | neeq1 | ⊢ ( 𝑧 = 𝑠 → ( 𝑧 ≠ ∅ ↔ 𝑠 ≠ ∅ ) ) | |
| 40 | fveq2 | ⊢ ( 𝑧 = 𝑠 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑠 ) ) | |
| 41 | id | ⊢ ( 𝑧 = 𝑠 → 𝑧 = 𝑠 ) | |
| 42 | 40 41 | eleq12d | ⊢ ( 𝑧 = 𝑠 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
| 43 | 39 42 | imbi12d | ⊢ ( 𝑧 = 𝑠 → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) ) |
| 44 | 37 38 43 | cbvralw | ⊢ ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑠 ∈ 𝐴 ( 𝑠 ≠ ∅ → ( 𝐹 ‘ 𝑠 ) ∈ 𝑠 ) ) |
| 45 | 30 44 | sylibr | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 46 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 47 | 46 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 48 | 47 | imbi2d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 49 | 48 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 50 | 22 45 49 | spcedv | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑟 We ∪ 𝐴 ) → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 51 | 50 | ex | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝑟 We ∪ 𝐴 → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |
| 52 | 51 | exlimdv | ⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑟 𝑟 We ∪ 𝐴 → ∃ 𝑓 ∀ 𝑧 ∈ 𝐴 ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) |