This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The well-ordering theorem: every numerable set is well-orderable. (Contributed by Mario Carneiro, 5-Jan-2013) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac8b | |- ( A e. dom card -> E. x x We A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardid2 | |- ( A e. dom card -> ( card ` A ) ~~ A ) |
|
| 2 | bren | |- ( ( card ` A ) ~~ A <-> E. f f : ( card ` A ) -1-1-onto-> A ) |
|
| 3 | 1 2 | sylib | |- ( A e. dom card -> E. f f : ( card ` A ) -1-1-onto-> A ) |
| 4 | sqxpexg | |- ( A e. dom card -> ( A X. A ) e. _V ) |
|
| 5 | incom | |- ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) = ( ( A X. A ) i^i { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } ) |
|
| 6 | inex1g | |- ( ( A X. A ) e. _V -> ( ( A X. A ) i^i { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } ) e. _V ) |
|
| 7 | 5 6 | eqeltrid | |- ( ( A X. A ) e. _V -> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) e. _V ) |
| 8 | 4 7 | syl | |- ( A e. dom card -> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) e. _V ) |
| 9 | f1ocnv | |- ( f : ( card ` A ) -1-1-onto-> A -> `' f : A -1-1-onto-> ( card ` A ) ) |
|
| 10 | cardon | |- ( card ` A ) e. On |
|
| 11 | 10 | onordi | |- Ord ( card ` A ) |
| 12 | ordwe | |- ( Ord ( card ` A ) -> _E We ( card ` A ) ) |
|
| 13 | 11 12 | ax-mp | |- _E We ( card ` A ) |
| 14 | eqid | |- { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } = { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } |
|
| 15 | 14 | f1owe | |- ( `' f : A -1-1-onto-> ( card ` A ) -> ( _E We ( card ` A ) -> { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } We A ) ) |
| 16 | 9 13 15 | mpisyl | |- ( f : ( card ` A ) -1-1-onto-> A -> { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } We A ) |
| 17 | weinxp | |- ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } We A <-> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A ) |
|
| 18 | 16 17 | sylib | |- ( f : ( card ` A ) -1-1-onto-> A -> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A ) |
| 19 | weeq1 | |- ( x = ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) -> ( x We A <-> ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A ) ) |
|
| 20 | 19 | spcegv | |- ( ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) e. _V -> ( ( { <. z , w >. | ( `' f ` z ) _E ( `' f ` w ) } i^i ( A X. A ) ) We A -> E. x x We A ) ) |
| 21 | 8 18 20 | syl2im | |- ( A e. dom card -> ( f : ( card ` A ) -1-1-onto-> A -> E. x x We A ) ) |
| 22 | 21 | exlimdv | |- ( A e. dom card -> ( E. f f : ( card ` A ) -1-1-onto-> A -> E. x x We A ) ) |
| 23 | 3 22 | mpd | |- ( A e. dom card -> E. x x We A ) |