This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac5 . (Contributed by NM, 12-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfac5lem.1 | ⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } | |
| Assertion | dfac5lem3 | ⊢ ( ( { 𝑤 } × 𝑤 ) ∈ 𝐴 ↔ ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5lem.1 | ⊢ 𝐴 = { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } | |
| 2 | vsnex | ⊢ { 𝑤 } ∈ V | |
| 3 | vex | ⊢ 𝑤 ∈ V | |
| 4 | 2 3 | xpex | ⊢ ( { 𝑤 } × 𝑤 ) ∈ V |
| 5 | neeq1 | ⊢ ( 𝑢 = ( { 𝑤 } × 𝑤 ) → ( 𝑢 ≠ ∅ ↔ ( { 𝑤 } × 𝑤 ) ≠ ∅ ) ) | |
| 6 | eqeq1 | ⊢ ( 𝑢 = ( { 𝑤 } × 𝑤 ) → ( 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ) | |
| 7 | 6 | rexbidv | ⊢ ( 𝑢 = ( { 𝑤 } × 𝑤 ) → ( ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ∈ ℎ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑢 = ( { 𝑤 } × 𝑤 ) → ( ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) ↔ ( ( { 𝑤 } × 𝑤 ) ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ) ) |
| 9 | 4 8 | elab | ⊢ ( ( { 𝑤 } × 𝑤 ) ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ↔ ( ( { 𝑤 } × 𝑤 ) ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ) |
| 10 | 1 | eleq2i | ⊢ ( ( { 𝑤 } × 𝑤 ) ∈ 𝐴 ↔ ( { 𝑤 } × 𝑤 ) ∈ { 𝑢 ∣ ( 𝑢 ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ 𝑢 = ( { 𝑡 } × 𝑡 ) ) } ) |
| 11 | xpeq2 | ⊢ ( 𝑤 = ∅ → ( { 𝑤 } × 𝑤 ) = ( { 𝑤 } × ∅ ) ) | |
| 12 | xp0 | ⊢ ( { 𝑤 } × ∅ ) = ∅ | |
| 13 | 11 12 | eqtrdi | ⊢ ( 𝑤 = ∅ → ( { 𝑤 } × 𝑤 ) = ∅ ) |
| 14 | rneq | ⊢ ( ( { 𝑤 } × 𝑤 ) = ∅ → ran ( { 𝑤 } × 𝑤 ) = ran ∅ ) | |
| 15 | 3 | snnz | ⊢ { 𝑤 } ≠ ∅ |
| 16 | rnxp | ⊢ ( { 𝑤 } ≠ ∅ → ran ( { 𝑤 } × 𝑤 ) = 𝑤 ) | |
| 17 | 15 16 | ax-mp | ⊢ ran ( { 𝑤 } × 𝑤 ) = 𝑤 |
| 18 | rn0 | ⊢ ran ∅ = ∅ | |
| 19 | 14 17 18 | 3eqtr3g | ⊢ ( ( { 𝑤 } × 𝑤 ) = ∅ → 𝑤 = ∅ ) |
| 20 | 13 19 | impbii | ⊢ ( 𝑤 = ∅ ↔ ( { 𝑤 } × 𝑤 ) = ∅ ) |
| 21 | 20 | necon3bii | ⊢ ( 𝑤 ≠ ∅ ↔ ( { 𝑤 } × 𝑤 ) ≠ ∅ ) |
| 22 | df-rex | ⊢ ( ∃ 𝑡 ∈ ℎ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ↔ ∃ 𝑡 ( 𝑡 ∈ ℎ ∧ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ) | |
| 23 | rneq | ⊢ ( ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) → ran ( { 𝑤 } × 𝑤 ) = ran ( { 𝑡 } × 𝑡 ) ) | |
| 24 | vex | ⊢ 𝑡 ∈ V | |
| 25 | 24 | snnz | ⊢ { 𝑡 } ≠ ∅ |
| 26 | rnxp | ⊢ ( { 𝑡 } ≠ ∅ → ran ( { 𝑡 } × 𝑡 ) = 𝑡 ) | |
| 27 | 25 26 | ax-mp | ⊢ ran ( { 𝑡 } × 𝑡 ) = 𝑡 |
| 28 | 23 17 27 | 3eqtr3g | ⊢ ( ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) → 𝑤 = 𝑡 ) |
| 29 | sneq | ⊢ ( 𝑤 = 𝑡 → { 𝑤 } = { 𝑡 } ) | |
| 30 | 29 | xpeq1d | ⊢ ( 𝑤 = 𝑡 → ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑤 ) ) |
| 31 | xpeq2 | ⊢ ( 𝑤 = 𝑡 → ( { 𝑡 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) | |
| 32 | 30 31 | eqtrd | ⊢ ( 𝑤 = 𝑡 → ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) |
| 33 | 28 32 | impbii | ⊢ ( ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ↔ 𝑤 = 𝑡 ) |
| 34 | equcom | ⊢ ( 𝑤 = 𝑡 ↔ 𝑡 = 𝑤 ) | |
| 35 | 33 34 | bitri | ⊢ ( ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ↔ 𝑡 = 𝑤 ) |
| 36 | 35 | anbi1ci | ⊢ ( ( 𝑡 ∈ ℎ ∧ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ↔ ( 𝑡 = 𝑤 ∧ 𝑡 ∈ ℎ ) ) |
| 37 | 36 | exbii | ⊢ ( ∃ 𝑡 ( 𝑡 ∈ ℎ ∧ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ↔ ∃ 𝑡 ( 𝑡 = 𝑤 ∧ 𝑡 ∈ ℎ ) ) |
| 38 | elequ1 | ⊢ ( 𝑡 = 𝑤 → ( 𝑡 ∈ ℎ ↔ 𝑤 ∈ ℎ ) ) | |
| 39 | 38 | equsexvw | ⊢ ( ∃ 𝑡 ( 𝑡 = 𝑤 ∧ 𝑡 ∈ ℎ ) ↔ 𝑤 ∈ ℎ ) |
| 40 | 22 37 39 | 3bitrri | ⊢ ( 𝑤 ∈ ℎ ↔ ∃ 𝑡 ∈ ℎ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) |
| 41 | 21 40 | anbi12i | ⊢ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) ↔ ( ( { 𝑤 } × 𝑤 ) ≠ ∅ ∧ ∃ 𝑡 ∈ ℎ ( { 𝑤 } × 𝑤 ) = ( { 𝑡 } × 𝑡 ) ) ) |
| 42 | 9 10 41 | 3bitr4i | ⊢ ( ( { 𝑤 } × 𝑤 ) ∈ 𝐴 ↔ ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ ℎ ) ) |