This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac5 . (Contributed by NM, 12-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfac5lem.1 | |- A = { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } |
|
| Assertion | dfac5lem3 | |- ( ( { w } X. w ) e. A <-> ( w =/= (/) /\ w e. h ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5lem.1 | |- A = { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } |
|
| 2 | vsnex | |- { w } e. _V |
|
| 3 | vex | |- w e. _V |
|
| 4 | 2 3 | xpex | |- ( { w } X. w ) e. _V |
| 5 | neeq1 | |- ( u = ( { w } X. w ) -> ( u =/= (/) <-> ( { w } X. w ) =/= (/) ) ) |
|
| 6 | eqeq1 | |- ( u = ( { w } X. w ) -> ( u = ( { t } X. t ) <-> ( { w } X. w ) = ( { t } X. t ) ) ) |
|
| 7 | 6 | rexbidv | |- ( u = ( { w } X. w ) -> ( E. t e. h u = ( { t } X. t ) <-> E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) |
| 8 | 5 7 | anbi12d | |- ( u = ( { w } X. w ) -> ( ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) <-> ( ( { w } X. w ) =/= (/) /\ E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) ) |
| 9 | 4 8 | elab | |- ( ( { w } X. w ) e. { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } <-> ( ( { w } X. w ) =/= (/) /\ E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) |
| 10 | 1 | eleq2i | |- ( ( { w } X. w ) e. A <-> ( { w } X. w ) e. { u | ( u =/= (/) /\ E. t e. h u = ( { t } X. t ) ) } ) |
| 11 | xpeq2 | |- ( w = (/) -> ( { w } X. w ) = ( { w } X. (/) ) ) |
|
| 12 | xp0 | |- ( { w } X. (/) ) = (/) |
|
| 13 | 11 12 | eqtrdi | |- ( w = (/) -> ( { w } X. w ) = (/) ) |
| 14 | rneq | |- ( ( { w } X. w ) = (/) -> ran ( { w } X. w ) = ran (/) ) |
|
| 15 | 3 | snnz | |- { w } =/= (/) |
| 16 | rnxp | |- ( { w } =/= (/) -> ran ( { w } X. w ) = w ) |
|
| 17 | 15 16 | ax-mp | |- ran ( { w } X. w ) = w |
| 18 | rn0 | |- ran (/) = (/) |
|
| 19 | 14 17 18 | 3eqtr3g | |- ( ( { w } X. w ) = (/) -> w = (/) ) |
| 20 | 13 19 | impbii | |- ( w = (/) <-> ( { w } X. w ) = (/) ) |
| 21 | 20 | necon3bii | |- ( w =/= (/) <-> ( { w } X. w ) =/= (/) ) |
| 22 | df-rex | |- ( E. t e. h ( { w } X. w ) = ( { t } X. t ) <-> E. t ( t e. h /\ ( { w } X. w ) = ( { t } X. t ) ) ) |
|
| 23 | rneq | |- ( ( { w } X. w ) = ( { t } X. t ) -> ran ( { w } X. w ) = ran ( { t } X. t ) ) |
|
| 24 | vex | |- t e. _V |
|
| 25 | 24 | snnz | |- { t } =/= (/) |
| 26 | rnxp | |- ( { t } =/= (/) -> ran ( { t } X. t ) = t ) |
|
| 27 | 25 26 | ax-mp | |- ran ( { t } X. t ) = t |
| 28 | 23 17 27 | 3eqtr3g | |- ( ( { w } X. w ) = ( { t } X. t ) -> w = t ) |
| 29 | sneq | |- ( w = t -> { w } = { t } ) |
|
| 30 | 29 | xpeq1d | |- ( w = t -> ( { w } X. w ) = ( { t } X. w ) ) |
| 31 | xpeq2 | |- ( w = t -> ( { t } X. w ) = ( { t } X. t ) ) |
|
| 32 | 30 31 | eqtrd | |- ( w = t -> ( { w } X. w ) = ( { t } X. t ) ) |
| 33 | 28 32 | impbii | |- ( ( { w } X. w ) = ( { t } X. t ) <-> w = t ) |
| 34 | equcom | |- ( w = t <-> t = w ) |
|
| 35 | 33 34 | bitri | |- ( ( { w } X. w ) = ( { t } X. t ) <-> t = w ) |
| 36 | 35 | anbi1ci | |- ( ( t e. h /\ ( { w } X. w ) = ( { t } X. t ) ) <-> ( t = w /\ t e. h ) ) |
| 37 | 36 | exbii | |- ( E. t ( t e. h /\ ( { w } X. w ) = ( { t } X. t ) ) <-> E. t ( t = w /\ t e. h ) ) |
| 38 | elequ1 | |- ( t = w -> ( t e. h <-> w e. h ) ) |
|
| 39 | 38 | equsexvw | |- ( E. t ( t = w /\ t e. h ) <-> w e. h ) |
| 40 | 22 37 39 | 3bitrri | |- ( w e. h <-> E. t e. h ( { w } X. w ) = ( { t } X. t ) ) |
| 41 | 21 40 | anbi12i | |- ( ( w =/= (/) /\ w e. h ) <-> ( ( { w } X. w ) =/= (/) /\ E. t e. h ( { w } X. w ) = ( { t } X. t ) ) ) |
| 42 | 9 10 41 | 3bitr4i | |- ( ( { w } X. w ) e. A <-> ( w =/= (/) /\ w e. h ) ) |