This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac13 | ⊢ ( CHOICE ↔ ∀ 𝑥 𝑥 ∈ AC 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | acacni | ⊢ ( ( CHOICE ∧ 𝑥 ∈ V ) → AC 𝑥 = V ) | |
| 3 | 2 | elvd | ⊢ ( CHOICE → AC 𝑥 = V ) |
| 4 | 1 3 | eleqtrrid | ⊢ ( CHOICE → 𝑥 ∈ AC 𝑥 ) |
| 5 | 4 | alrimiv | ⊢ ( CHOICE → ∀ 𝑥 𝑥 ∈ AC 𝑥 ) |
| 6 | vpwex | ⊢ 𝒫 𝑧 ∈ V | |
| 7 | id | ⊢ ( 𝑥 = 𝒫 𝑧 → 𝑥 = 𝒫 𝑧 ) | |
| 8 | acneq | ⊢ ( 𝑥 = 𝒫 𝑧 → AC 𝑥 = AC 𝒫 𝑧 ) | |
| 9 | 7 8 | eleq12d | ⊢ ( 𝑥 = 𝒫 𝑧 → ( 𝑥 ∈ AC 𝑥 ↔ 𝒫 𝑧 ∈ AC 𝒫 𝑧 ) ) |
| 10 | 6 9 | spcv | ⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → 𝒫 𝑧 ∈ AC 𝒫 𝑧 ) |
| 11 | vex | ⊢ 𝑦 ∈ V | |
| 12 | vex | ⊢ 𝑧 ∈ V | |
| 13 | 12 | canth2 | ⊢ 𝑧 ≺ 𝒫 𝑧 |
| 14 | sdomdom | ⊢ ( 𝑧 ≺ 𝒫 𝑧 → 𝑧 ≼ 𝒫 𝑧 ) | |
| 15 | acndom2 | ⊢ ( 𝑧 ≼ 𝒫 𝑧 → ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧 ) ) | |
| 16 | 13 14 15 | mp2b | ⊢ ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝒫 𝑧 ) |
| 17 | acnnum | ⊢ ( 𝑧 ∈ AC 𝒫 𝑧 ↔ 𝑧 ∈ dom card ) | |
| 18 | 16 17 | sylib | ⊢ ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ dom card ) |
| 19 | numacn | ⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ dom card → 𝑧 ∈ AC 𝑦 ) ) | |
| 20 | 11 18 19 | mpsyl | ⊢ ( 𝒫 𝑧 ∈ AC 𝒫 𝑧 → 𝑧 ∈ AC 𝑦 ) |
| 21 | 10 20 | syl | ⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ AC 𝑦 ) |
| 22 | 12 | a1i | ⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → 𝑧 ∈ V ) |
| 23 | 21 22 | 2thd | ⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → ( 𝑧 ∈ AC 𝑦 ↔ 𝑧 ∈ V ) ) |
| 24 | 23 | eqrdv | ⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → AC 𝑦 = V ) |
| 25 | 24 | alrimiv | ⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → ∀ 𝑦 AC 𝑦 = V ) |
| 26 | dfacacn | ⊢ ( CHOICE ↔ ∀ 𝑦 AC 𝑦 = V ) | |
| 27 | 25 26 | sylibr | ⊢ ( ∀ 𝑥 𝑥 ∈ AC 𝑥 → CHOICE ) |
| 28 | 5 27 | impbii | ⊢ ( CHOICE ↔ ∀ 𝑥 𝑥 ∈ AC 𝑥 ) |