This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The axiom of choice holds iff every set has choice sequences as long as itself. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfac13 | |- ( CHOICE <-> A. x x e. AC_ x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | acacni | |- ( ( CHOICE /\ x e. _V ) -> AC_ x = _V ) |
|
| 3 | 2 | elvd | |- ( CHOICE -> AC_ x = _V ) |
| 4 | 1 3 | eleqtrrid | |- ( CHOICE -> x e. AC_ x ) |
| 5 | 4 | alrimiv | |- ( CHOICE -> A. x x e. AC_ x ) |
| 6 | vpwex | |- ~P z e. _V |
|
| 7 | id | |- ( x = ~P z -> x = ~P z ) |
|
| 8 | acneq | |- ( x = ~P z -> AC_ x = AC_ ~P z ) |
|
| 9 | 7 8 | eleq12d | |- ( x = ~P z -> ( x e. AC_ x <-> ~P z e. AC_ ~P z ) ) |
| 10 | 6 9 | spcv | |- ( A. x x e. AC_ x -> ~P z e. AC_ ~P z ) |
| 11 | vex | |- y e. _V |
|
| 12 | vex | |- z e. _V |
|
| 13 | 12 | canth2 | |- z ~< ~P z |
| 14 | sdomdom | |- ( z ~< ~P z -> z ~<_ ~P z ) |
|
| 15 | acndom2 | |- ( z ~<_ ~P z -> ( ~P z e. AC_ ~P z -> z e. AC_ ~P z ) ) |
|
| 16 | 13 14 15 | mp2b | |- ( ~P z e. AC_ ~P z -> z e. AC_ ~P z ) |
| 17 | acnnum | |- ( z e. AC_ ~P z <-> z e. dom card ) |
|
| 18 | 16 17 | sylib | |- ( ~P z e. AC_ ~P z -> z e. dom card ) |
| 19 | numacn | |- ( y e. _V -> ( z e. dom card -> z e. AC_ y ) ) |
|
| 20 | 11 18 19 | mpsyl | |- ( ~P z e. AC_ ~P z -> z e. AC_ y ) |
| 21 | 10 20 | syl | |- ( A. x x e. AC_ x -> z e. AC_ y ) |
| 22 | 12 | a1i | |- ( A. x x e. AC_ x -> z e. _V ) |
| 23 | 21 22 | 2thd | |- ( A. x x e. AC_ x -> ( z e. AC_ y <-> z e. _V ) ) |
| 24 | 23 | eqrdv | |- ( A. x x e. AC_ x -> AC_ y = _V ) |
| 25 | 24 | alrimiv | |- ( A. x x e. AC_ x -> A. y AC_ y = _V ) |
| 26 | dfacacn | |- ( CHOICE <-> A. y AC_ y = _V ) |
|
| 27 | 25 26 | sylibr | |- ( A. x x e. AC_ x -> CHOICE ) |
| 28 | 5 27 | impbii | |- ( CHOICE <-> A. x x e. AC_ x ) |