This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for an operation to be commutative. Lemma for cycsubmcom and cygabl . Formerly part of proof for cygabl . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by AV, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cyccom.c | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ) | |
| cyccom.d | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) | ||
| cyccom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | ||
| cyccom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐶 ) | ||
| cyccom.z | ⊢ ( 𝜑 → 𝑍 ⊆ ℂ ) | ||
| Assertion | cyccom | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cyccom.c | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ) | |
| 2 | cyccom.d | ⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) | |
| 3 | cyccom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | |
| 4 | cyccom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐶 ) | |
| 5 | cyccom.z | ⊢ ( 𝜑 → 𝑍 ⊆ ℂ ) | |
| 6 | eqeq1 | ⊢ ( 𝑐 = 𝑌 → ( 𝑐 = ( 𝑥 · 𝐴 ) ↔ 𝑌 = ( 𝑥 · 𝐴 ) ) ) | |
| 7 | 6 | rexbidv | ⊢ ( 𝑐 = 𝑌 → ( ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
| 8 | 7 | rspccv | ⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) → ( 𝑌 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ) ) |
| 10 | eqeq1 | ⊢ ( 𝑐 = 𝑋 → ( 𝑐 = ( 𝑥 · 𝐴 ) ↔ 𝑋 = ( 𝑥 · 𝐴 ) ) ) | |
| 11 | 10 | rexbidv | ⊢ ( 𝑐 = 𝑋 → ( ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
| 12 | 11 | rspccv | ⊢ ( ∀ 𝑐 ∈ 𝐶 ∃ 𝑥 ∈ 𝑍 𝑐 = ( 𝑥 · 𝐴 ) → ( 𝑋 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
| 13 | 1 12 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ) ) |
| 14 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) | |
| 15 | 14 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑌 = ( 𝑥 · 𝐴 ) ↔ 𝑌 = ( 𝑦 · 𝐴 ) ) ) |
| 16 | 15 | cbvrexvw | ⊢ ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) |
| 17 | reeanv | ⊢ ( ∃ 𝑥 ∈ 𝑍 ∃ 𝑦 ∈ 𝑍 ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) ↔ ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) ) | |
| 18 | 5 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℂ ) ) |
| 19 | 18 | com12 | ⊢ ( 𝑥 ∈ 𝑍 → ( 𝜑 → 𝑥 ∈ ℂ ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) → ( 𝜑 → 𝑥 ∈ ℂ ) ) |
| 21 | 20 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → 𝑥 ∈ ℂ ) |
| 22 | 5 | sseld | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑍 → 𝑦 ∈ ℂ ) ) |
| 23 | 22 | a1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑍 → ( 𝑦 ∈ 𝑍 → 𝑦 ∈ ℂ ) ) ) |
| 24 | 23 | imp32 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → 𝑦 ∈ ℂ ) |
| 25 | 21 24 | addcomd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 26 | 25 | oveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑦 + 𝑥 ) · 𝐴 ) ) |
| 27 | simpr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) | |
| 28 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 29 | oveq1 | ⊢ ( 𝑚 = 𝑥 → ( 𝑚 + 𝑛 ) = ( 𝑥 + 𝑛 ) ) | |
| 30 | 29 | oveq1d | ⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 + 𝑛 ) · 𝐴 ) ) |
| 31 | oveq1 | ⊢ ( 𝑚 = 𝑥 → ( 𝑚 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) | |
| 32 | 31 | oveq1d | ⊢ ( 𝑚 = 𝑥 → ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 33 | 30 32 | eqeq12d | ⊢ ( 𝑚 = 𝑥 → ( ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) ) |
| 34 | oveq2 | ⊢ ( 𝑛 = 𝑦 → ( 𝑥 + 𝑛 ) = ( 𝑥 + 𝑦 ) ) | |
| 35 | 34 | oveq1d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 + 𝑦 ) · 𝐴 ) ) |
| 36 | oveq1 | ⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) | |
| 37 | 36 | oveq2d | ⊢ ( 𝑛 = 𝑦 → ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
| 38 | 35 37 | eqeq12d | ⊢ ( 𝑛 = 𝑦 → ( ( ( 𝑥 + 𝑛 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) ) |
| 39 | 33 38 | rspc2va | ⊢ ( ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
| 40 | 27 28 39 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 + 𝑦 ) · 𝐴 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) |
| 41 | 27 | ancomd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( 𝑦 ∈ 𝑍 ∧ 𝑥 ∈ 𝑍 ) ) |
| 42 | oveq1 | ⊢ ( 𝑚 = 𝑦 → ( 𝑚 + 𝑛 ) = ( 𝑦 + 𝑛 ) ) | |
| 43 | 42 | oveq1d | ⊢ ( 𝑚 = 𝑦 → ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 + 𝑛 ) · 𝐴 ) ) |
| 44 | oveq1 | ⊢ ( 𝑚 = 𝑦 → ( 𝑚 · 𝐴 ) = ( 𝑦 · 𝐴 ) ) | |
| 45 | 44 | oveq1d | ⊢ ( 𝑚 = 𝑦 → ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) |
| 46 | 43 45 | eqeq12d | ⊢ ( 𝑚 = 𝑦 → ( ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) ) |
| 47 | oveq2 | ⊢ ( 𝑛 = 𝑥 → ( 𝑦 + 𝑛 ) = ( 𝑦 + 𝑥 ) ) | |
| 48 | 47 | oveq1d | ⊢ ( 𝑛 = 𝑥 → ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 + 𝑥 ) · 𝐴 ) ) |
| 49 | oveq1 | ⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 𝐴 ) = ( 𝑥 · 𝐴 ) ) | |
| 50 | 49 | oveq2d | ⊢ ( 𝑛 = 𝑥 → ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 51 | 48 50 | eqeq12d | ⊢ ( 𝑛 = 𝑥 → ( ( ( 𝑦 + 𝑛 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ↔ ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) ) |
| 52 | 46 51 | rspc2va | ⊢ ( ( ( 𝑦 ∈ 𝑍 ∧ 𝑥 ∈ 𝑍 ) ∧ ∀ 𝑚 ∈ 𝑍 ∀ 𝑛 ∈ 𝑍 ( ( 𝑚 + 𝑛 ) · 𝐴 ) = ( ( 𝑚 · 𝐴 ) + ( 𝑛 · 𝐴 ) ) ) → ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 53 | 41 28 52 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑦 + 𝑥 ) · 𝐴 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 54 | 26 40 53 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 55 | oveq12 | ⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) ) | |
| 56 | oveq12 | ⊢ ( ( 𝑌 = ( 𝑦 · 𝐴 ) ∧ 𝑋 = ( 𝑥 · 𝐴 ) ) → ( 𝑌 + 𝑋 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) | |
| 57 | 56 | ancoms | ⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑌 + 𝑋 ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) |
| 58 | 55 57 | eqeq12d | ⊢ ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ↔ ( ( 𝑥 · 𝐴 ) + ( 𝑦 · 𝐴 ) ) = ( ( 𝑦 · 𝐴 ) + ( 𝑥 · 𝐴 ) ) ) ) |
| 59 | 54 58 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ 𝑍 ) ) → ( ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 60 | 59 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 ∃ 𝑦 ∈ 𝑍 ( 𝑋 = ( 𝑥 · 𝐴 ) ∧ 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 61 | 17 60 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) ∧ ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 62 | 61 | expd | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) → ( ∃ 𝑦 ∈ 𝑍 𝑌 = ( 𝑦 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 63 | 16 62 | syl7bi | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑋 = ( 𝑥 · 𝐴 ) → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 64 | 13 63 | syld | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐶 → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 65 | 64 | com23 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑍 𝑌 = ( 𝑥 · 𝐴 ) → ( 𝑋 ∈ 𝐶 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 66 | 9 65 | syld | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐶 → ( 𝑋 ∈ 𝐶 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) ) |
| 67 | 4 3 66 | mp2d | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |