This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of nonnegative integer powers of an element A contains A . Although this theorem holds for any class G , the definition of F is only meaningful if G is a monoid or at least a unital magma. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cycsubm.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cycsubm.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | ||
| cycsubm.c | ⊢ 𝐶 = ran 𝐹 | ||
| Assertion | cycsubmcl | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cycsubm.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | cycsubm.f | ⊢ 𝐹 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 · 𝐴 ) ) | |
| 4 | cycsubm.c | ⊢ 𝐶 = ran 𝐹 | |
| 5 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 6 | 5 | a1i | ⊢ ( 𝐴 ∈ 𝐵 → 1 ∈ ℕ0 ) |
| 7 | oveq1 | ⊢ ( 𝑖 = 1 → ( 𝑖 · 𝐴 ) = ( 1 · 𝐴 ) ) | |
| 8 | 7 | eqeq2d | ⊢ ( 𝑖 = 1 → ( 𝐴 = ( 𝑖 · 𝐴 ) ↔ 𝐴 = ( 1 · 𝐴 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ 𝑖 = 1 ) → ( 𝐴 = ( 𝑖 · 𝐴 ) ↔ 𝐴 = ( 1 · 𝐴 ) ) ) |
| 10 | 1 2 | mulg1 | ⊢ ( 𝐴 ∈ 𝐵 → ( 1 · 𝐴 ) = 𝐴 ) |
| 11 | 10 | eqcomd | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 = ( 1 · 𝐴 ) ) |
| 12 | 6 9 11 | rspcedvd | ⊢ ( 𝐴 ∈ 𝐵 → ∃ 𝑖 ∈ ℕ0 𝐴 = ( 𝑖 · 𝐴 ) ) |
| 13 | 1 2 3 4 | cycsubmel | ⊢ ( 𝐴 ∈ 𝐶 ↔ ∃ 𝑖 ∈ ℕ0 𝐴 = ( 𝑖 · 𝐴 ) ) |
| 14 | 12 13 | sylibr | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶 ) |