This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of nonnegative integer powers of an element A of a monoid forms a submonoid containing A (see cycsubmcl ), called the cyclic monoid generated by the element A . This corresponds to the statement in Lang p. 6. (Contributed by AV, 28-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cycsubm.b | |- B = ( Base ` G ) |
|
| cycsubm.t | |- .x. = ( .g ` G ) |
||
| cycsubm.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
||
| cycsubm.c | |- C = ran F |
||
| Assertion | cycsubm | |- ( ( G e. Mnd /\ A e. B ) -> C e. ( SubMnd ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubm.b | |- B = ( Base ` G ) |
|
| 2 | cycsubm.t | |- .x. = ( .g ` G ) |
|
| 3 | cycsubm.f | |- F = ( x e. NN0 |-> ( x .x. A ) ) |
|
| 4 | cycsubm.c | |- C = ran F |
|
| 5 | 1 2 | mulgnn0cl | |- ( ( G e. Mnd /\ x e. NN0 /\ A e. B ) -> ( x .x. A ) e. B ) |
| 6 | 5 | 3expa | |- ( ( ( G e. Mnd /\ x e. NN0 ) /\ A e. B ) -> ( x .x. A ) e. B ) |
| 7 | 6 | an32s | |- ( ( ( G e. Mnd /\ A e. B ) /\ x e. NN0 ) -> ( x .x. A ) e. B ) |
| 8 | 7 3 | fmptd | |- ( ( G e. Mnd /\ A e. B ) -> F : NN0 --> B ) |
| 9 | 8 | frnd | |- ( ( G e. Mnd /\ A e. B ) -> ran F C_ B ) |
| 10 | 4 9 | eqsstrid | |- ( ( G e. Mnd /\ A e. B ) -> C C_ B ) |
| 11 | 0nn0 | |- 0 e. NN0 |
|
| 12 | 11 | a1i | |- ( ( G e. Mnd /\ A e. B ) -> 0 e. NN0 ) |
| 13 | oveq1 | |- ( i = 0 -> ( i .x. A ) = ( 0 .x. A ) ) |
|
| 14 | 13 | eqeq2d | |- ( i = 0 -> ( ( 0g ` G ) = ( i .x. A ) <-> ( 0g ` G ) = ( 0 .x. A ) ) ) |
| 15 | 14 | adantl | |- ( ( ( G e. Mnd /\ A e. B ) /\ i = 0 ) -> ( ( 0g ` G ) = ( i .x. A ) <-> ( 0g ` G ) = ( 0 .x. A ) ) ) |
| 16 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 17 | 1 16 2 | mulg0 | |- ( A e. B -> ( 0 .x. A ) = ( 0g ` G ) ) |
| 18 | 17 | adantl | |- ( ( G e. Mnd /\ A e. B ) -> ( 0 .x. A ) = ( 0g ` G ) ) |
| 19 | 18 | eqcomd | |- ( ( G e. Mnd /\ A e. B ) -> ( 0g ` G ) = ( 0 .x. A ) ) |
| 20 | 12 15 19 | rspcedvd | |- ( ( G e. Mnd /\ A e. B ) -> E. i e. NN0 ( 0g ` G ) = ( i .x. A ) ) |
| 21 | 1 2 3 4 | cycsubmel | |- ( ( 0g ` G ) e. C <-> E. i e. NN0 ( 0g ` G ) = ( i .x. A ) ) |
| 22 | 20 21 | sylibr | |- ( ( G e. Mnd /\ A e. B ) -> ( 0g ` G ) e. C ) |
| 23 | simplr | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> i e. NN0 ) |
|
| 24 | simpr | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> j e. NN0 ) |
|
| 25 | 23 24 | nn0addcld | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> ( i + j ) e. NN0 ) |
| 26 | 25 | adantr | |- ( ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) /\ ( b = ( j .x. A ) /\ a = ( i .x. A ) ) ) -> ( i + j ) e. NN0 ) |
| 27 | oveq1 | |- ( k = ( i + j ) -> ( k .x. A ) = ( ( i + j ) .x. A ) ) |
|
| 28 | 27 | eqeq2d | |- ( k = ( i + j ) -> ( ( a ( +g ` G ) b ) = ( k .x. A ) <-> ( a ( +g ` G ) b ) = ( ( i + j ) .x. A ) ) ) |
| 29 | 28 | adantl | |- ( ( ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) /\ ( b = ( j .x. A ) /\ a = ( i .x. A ) ) ) /\ k = ( i + j ) ) -> ( ( a ( +g ` G ) b ) = ( k .x. A ) <-> ( a ( +g ` G ) b ) = ( ( i + j ) .x. A ) ) ) |
| 30 | oveq12 | |- ( ( a = ( i .x. A ) /\ b = ( j .x. A ) ) -> ( a ( +g ` G ) b ) = ( ( i .x. A ) ( +g ` G ) ( j .x. A ) ) ) |
|
| 31 | 30 | ancoms | |- ( ( b = ( j .x. A ) /\ a = ( i .x. A ) ) -> ( a ( +g ` G ) b ) = ( ( i .x. A ) ( +g ` G ) ( j .x. A ) ) ) |
| 32 | simplll | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> G e. Mnd ) |
|
| 33 | simpllr | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> A e. B ) |
|
| 34 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 35 | 1 2 34 | mulgnn0dir | |- ( ( G e. Mnd /\ ( i e. NN0 /\ j e. NN0 /\ A e. B ) ) -> ( ( i + j ) .x. A ) = ( ( i .x. A ) ( +g ` G ) ( j .x. A ) ) ) |
| 36 | 32 23 24 33 35 | syl13anc | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( i + j ) .x. A ) = ( ( i .x. A ) ( +g ` G ) ( j .x. A ) ) ) |
| 37 | 36 | eqcomd | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> ( ( i .x. A ) ( +g ` G ) ( j .x. A ) ) = ( ( i + j ) .x. A ) ) |
| 38 | 31 37 | sylan9eqr | |- ( ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) /\ ( b = ( j .x. A ) /\ a = ( i .x. A ) ) ) -> ( a ( +g ` G ) b ) = ( ( i + j ) .x. A ) ) |
| 39 | 26 29 38 | rspcedvd | |- ( ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) /\ ( b = ( j .x. A ) /\ a = ( i .x. A ) ) ) -> E. k e. NN0 ( a ( +g ` G ) b ) = ( k .x. A ) ) |
| 40 | 39 | exp32 | |- ( ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) /\ j e. NN0 ) -> ( b = ( j .x. A ) -> ( a = ( i .x. A ) -> E. k e. NN0 ( a ( +g ` G ) b ) = ( k .x. A ) ) ) ) |
| 41 | 40 | rexlimdva | |- ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) -> ( E. j e. NN0 b = ( j .x. A ) -> ( a = ( i .x. A ) -> E. k e. NN0 ( a ( +g ` G ) b ) = ( k .x. A ) ) ) ) |
| 42 | 41 | com23 | |- ( ( ( G e. Mnd /\ A e. B ) /\ i e. NN0 ) -> ( a = ( i .x. A ) -> ( E. j e. NN0 b = ( j .x. A ) -> E. k e. NN0 ( a ( +g ` G ) b ) = ( k .x. A ) ) ) ) |
| 43 | 42 | rexlimdva | |- ( ( G e. Mnd /\ A e. B ) -> ( E. i e. NN0 a = ( i .x. A ) -> ( E. j e. NN0 b = ( j .x. A ) -> E. k e. NN0 ( a ( +g ` G ) b ) = ( k .x. A ) ) ) ) |
| 44 | 43 | impd | |- ( ( G e. Mnd /\ A e. B ) -> ( ( E. i e. NN0 a = ( i .x. A ) /\ E. j e. NN0 b = ( j .x. A ) ) -> E. k e. NN0 ( a ( +g ` G ) b ) = ( k .x. A ) ) ) |
| 45 | 1 2 3 4 | cycsubmel | |- ( a e. C <-> E. i e. NN0 a = ( i .x. A ) ) |
| 46 | 1 2 3 4 | cycsubmel | |- ( b e. C <-> E. j e. NN0 b = ( j .x. A ) ) |
| 47 | 45 46 | anbi12i | |- ( ( a e. C /\ b e. C ) <-> ( E. i e. NN0 a = ( i .x. A ) /\ E. j e. NN0 b = ( j .x. A ) ) ) |
| 48 | 1 2 3 4 | cycsubmel | |- ( ( a ( +g ` G ) b ) e. C <-> E. k e. NN0 ( a ( +g ` G ) b ) = ( k .x. A ) ) |
| 49 | 44 47 48 | 3imtr4g | |- ( ( G e. Mnd /\ A e. B ) -> ( ( a e. C /\ b e. C ) -> ( a ( +g ` G ) b ) e. C ) ) |
| 50 | 49 | ralrimivv | |- ( ( G e. Mnd /\ A e. B ) -> A. a e. C A. b e. C ( a ( +g ` G ) b ) e. C ) |
| 51 | 1 16 34 | issubm | |- ( G e. Mnd -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ A. a e. C A. b e. C ( a ( +g ` G ) b ) e. C ) ) ) |
| 52 | 51 | adantr | |- ( ( G e. Mnd /\ A e. B ) -> ( C e. ( SubMnd ` G ) <-> ( C C_ B /\ ( 0g ` G ) e. C /\ A. a e. C A. b e. C ( a ( +g ` G ) b ) e. C ) ) ) |
| 53 | 10 22 50 52 | mpbir3and | |- ( ( G e. Mnd /\ A e. B ) -> C e. ( SubMnd ` G ) ) |