This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize cxpmul2 to negative integers. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpmul2z | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 | ⊢ ( 𝐶 ∈ ℤ ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐶 ∈ ℕ0 ∨ - 𝐶 ∈ ℕ0 ) ) ) | |
| 2 | cxpmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) | |
| 3 | 2 | 3expia | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐶 ∈ ℕ0 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 4 | 3 | ad4ant13 | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐶 ∈ ℕ0 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 5 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → 𝐴 ∈ ℂ ) | |
| 6 | simplr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → 𝐵 ∈ ℂ ) | |
| 7 | simprr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → - 𝐶 ∈ ℕ0 ) | |
| 8 | cxpmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) | |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐴 ↑𝑐 ( 𝐵 · - 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) |
| 10 | 9 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 1 / ( 𝐴 ↑𝑐 ( 𝐵 · - 𝐶 ) ) ) = ( 1 / ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) ) |
| 11 | simprl | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → 𝐶 ∈ ℝ ) | |
| 12 | 11 | recnd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → 𝐶 ∈ ℂ ) |
| 13 | 6 12 | mulneg2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐵 · - 𝐶 ) = - ( 𝐵 · 𝐶 ) ) |
| 14 | 13 | negeqd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → - ( 𝐵 · - 𝐶 ) = - - ( 𝐵 · 𝐶 ) ) |
| 15 | 6 12 | mulcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 16 | 15 | negnegd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → - - ( 𝐵 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
| 17 | 14 16 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → - ( 𝐵 · - 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
| 18 | 17 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐴 ↑𝑐 - ( 𝐵 · - 𝐶 ) ) = ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) ) |
| 19 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → 𝐴 ≠ 0 ) | |
| 20 | 12 | negcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → - 𝐶 ∈ ℂ ) |
| 21 | 6 20 | mulcld | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐵 · - 𝐶 ) ∈ ℂ ) |
| 22 | cxpneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 𝐵 · - 𝐶 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 - ( 𝐵 · - 𝐶 ) ) = ( 1 / ( 𝐴 ↑𝑐 ( 𝐵 · - 𝐶 ) ) ) ) | |
| 23 | 5 19 21 22 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐴 ↑𝑐 - ( 𝐵 · - 𝐶 ) ) = ( 1 / ( 𝐴 ↑𝑐 ( 𝐵 · - 𝐶 ) ) ) ) |
| 24 | 18 23 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( 1 / ( 𝐴 ↑𝑐 ( 𝐵 · - 𝐶 ) ) ) ) |
| 25 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) | |
| 26 | 25 | ad4ant13 | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
| 27 | expneg2 | ⊢ ( ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ - 𝐶 ∈ ℕ0 ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) = ( 1 / ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) ) | |
| 28 | 26 12 7 27 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) = ( 1 / ( ( 𝐴 ↑𝑐 𝐵 ) ↑ - 𝐶 ) ) ) |
| 29 | 10 24 28 | 3eqtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℝ ∧ - 𝐶 ∈ ℕ0 ) ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |
| 30 | 29 | expr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ 𝐶 ∈ ℝ ) → ( - 𝐶 ∈ ℕ0 → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 31 | 4 30 | jaod | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 ∈ ℕ0 ∨ - 𝐶 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 32 | 31 | expimpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) → ( ( 𝐶 ∈ ℝ ∧ ( 𝐶 ∈ ℕ0 ∨ - 𝐶 ∈ ℕ0 ) ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 33 | 1 32 | biimtrid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ) → ( 𝐶 ∈ ℤ → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) ) |
| 34 | 33 | impr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℤ ) ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑ 𝐶 ) ) |