This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpneg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 2 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 3 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
| 5 | 2 | negcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → - 𝐵 ∈ ℂ ) |
| 6 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐵 ) ∈ ℂ ) | |
| 7 | 1 5 6 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐵 ) ∈ ℂ ) |
| 8 | cxpne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) | |
| 9 | 2 | negidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + - 𝐵 ) = 0 ) |
| 10 | 9 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐵 ) ) = ( 𝐴 ↑𝑐 0 ) ) |
| 11 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → 𝐴 ≠ 0 ) | |
| 12 | cxpadd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐵 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐵 ) ) ) | |
| 13 | 1 11 2 5 12 | syl211anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 + - 𝐵 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐵 ) ) ) |
| 14 | cxp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 0 ) = 1 ) | |
| 15 | 1 14 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 0 ) = 1 ) |
| 16 | 10 13 15 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) · ( 𝐴 ↑𝑐 - 𝐵 ) ) = 1 ) |
| 17 | 4 7 8 16 | mvllmuld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 - 𝐵 ) = ( 1 / ( 𝐴 ↑𝑐 𝐵 ) ) ) |