This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalize cxpmul2 to negative integers. (Contributed by Mario Carneiro, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpmul2z | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ C e. ZZ ) ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 | |- ( C e. ZZ <-> ( C e. RR /\ ( C e. NN0 \/ -u C e. NN0 ) ) ) |
|
| 2 | cxpmul2 | |- ( ( A e. CC /\ B e. CC /\ C e. NN0 ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |
|
| 3 | 2 | 3expia | |- ( ( A e. CC /\ B e. CC ) -> ( C e. NN0 -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 4 | 3 | ad4ant13 | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ C e. RR ) -> ( C e. NN0 -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 5 | simplll | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> A e. CC ) |
|
| 6 | simplr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> B e. CC ) |
|
| 7 | simprr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> -u C e. NN0 ) |
|
| 8 | cxpmul2 | |- ( ( A e. CC /\ B e. CC /\ -u C e. NN0 ) -> ( A ^c ( B x. -u C ) ) = ( ( A ^c B ) ^ -u C ) ) |
|
| 9 | 5 6 7 8 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( A ^c ( B x. -u C ) ) = ( ( A ^c B ) ^ -u C ) ) |
| 10 | 9 | oveq2d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( 1 / ( A ^c ( B x. -u C ) ) ) = ( 1 / ( ( A ^c B ) ^ -u C ) ) ) |
| 11 | simprl | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> C e. RR ) |
|
| 12 | 11 | recnd | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> C e. CC ) |
| 13 | 6 12 | mulneg2d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( B x. -u C ) = -u ( B x. C ) ) |
| 14 | 13 | negeqd | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> -u ( B x. -u C ) = -u -u ( B x. C ) ) |
| 15 | 6 12 | mulcld | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( B x. C ) e. CC ) |
| 16 | 15 | negnegd | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> -u -u ( B x. C ) = ( B x. C ) ) |
| 17 | 14 16 | eqtrd | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> -u ( B x. -u C ) = ( B x. C ) ) |
| 18 | 17 | oveq2d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( A ^c -u ( B x. -u C ) ) = ( A ^c ( B x. C ) ) ) |
| 19 | simpllr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> A =/= 0 ) |
|
| 20 | 12 | negcld | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> -u C e. CC ) |
| 21 | 6 20 | mulcld | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( B x. -u C ) e. CC ) |
| 22 | cxpneg | |- ( ( A e. CC /\ A =/= 0 /\ ( B x. -u C ) e. CC ) -> ( A ^c -u ( B x. -u C ) ) = ( 1 / ( A ^c ( B x. -u C ) ) ) ) |
|
| 23 | 5 19 21 22 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( A ^c -u ( B x. -u C ) ) = ( 1 / ( A ^c ( B x. -u C ) ) ) ) |
| 24 | 18 23 | eqtr3d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( A ^c ( B x. C ) ) = ( 1 / ( A ^c ( B x. -u C ) ) ) ) |
| 25 | cxpcl | |- ( ( A e. CC /\ B e. CC ) -> ( A ^c B ) e. CC ) |
|
| 26 | 25 | ad4ant13 | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( A ^c B ) e. CC ) |
| 27 | expneg2 | |- ( ( ( A ^c B ) e. CC /\ C e. CC /\ -u C e. NN0 ) -> ( ( A ^c B ) ^ C ) = ( 1 / ( ( A ^c B ) ^ -u C ) ) ) |
|
| 28 | 26 12 7 27 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( ( A ^c B ) ^ C ) = ( 1 / ( ( A ^c B ) ^ -u C ) ) ) |
| 29 | 10 24 28 | 3eqtr4d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ ( C e. RR /\ -u C e. NN0 ) ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |
| 30 | 29 | expr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ C e. RR ) -> ( -u C e. NN0 -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 31 | 4 30 | jaod | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) /\ C e. RR ) -> ( ( C e. NN0 \/ -u C e. NN0 ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 32 | 31 | expimpd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( ( C e. RR /\ ( C e. NN0 \/ -u C e. NN0 ) ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 33 | 1 32 | biimtrid | |- ( ( ( A e. CC /\ A =/= 0 ) /\ B e. CC ) -> ( C e. ZZ -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) ) |
| 34 | 33 | impr | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ C e. ZZ ) ) -> ( A ^c ( B x. C ) ) = ( ( A ^c B ) ^ C ) ) |