This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a power, when the base is real. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abscxp | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐴 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 2 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | 2 | recnd | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 5 | 1 4 | mulcld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 6 | absef | ⊢ ( ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℂ → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 8 | remul2 | ⊢ ( ( ( log ‘ 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( log ‘ 𝐴 ) · 𝐵 ) ) = ( ( log ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) | |
| 9 | 2 8 | sylan | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( ( log ‘ 𝐴 ) · 𝐵 ) ) = ( ( log ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
| 10 | 1 4 | mulcomd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · 𝐵 ) ) |
| 11 | 10 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( ( log ‘ 𝐴 ) · 𝐵 ) ) ) |
| 12 | recl | ⊢ ( 𝐵 ∈ ℂ → ( ℜ ‘ 𝐵 ) ∈ ℝ ) | |
| 13 | 12 | adantl | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℝ ) |
| 14 | 13 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ 𝐵 ) ∈ ℂ ) |
| 15 | 14 4 | mulcomd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) = ( ( log ‘ 𝐴 ) · ( ℜ ‘ 𝐵 ) ) ) |
| 16 | 9 11 15 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) = ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) |
| 17 | 16 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( exp ‘ ( ℜ ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) |
| 18 | 7 17 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) |
| 19 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 21 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → 𝐴 ≠ 0 ) |
| 23 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 24 | 20 22 1 23 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( abs ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 26 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( ℜ ‘ 𝐵 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ℜ ‘ 𝐵 ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) | |
| 27 | 20 22 14 26 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( ℜ ‘ 𝐵 ) ) = ( exp ‘ ( ( ℜ ‘ 𝐵 ) · ( log ‘ 𝐴 ) ) ) ) |
| 28 | 18 25 27 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℂ ) → ( abs ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐴 ↑𝑐 ( ℜ ‘ 𝐵 ) ) ) |