This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex power function allows to write n-th roots via the idiom A ^c ( 1 / N ) . (Contributed by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxproot | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 3 | nnne0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
| 5 | 2 4 | recid2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 1 / 𝑁 ) · 𝑁 ) = 1 ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑁 ) · 𝑁 ) ) = ( 𝐴 ↑𝑐 1 ) ) |
| 7 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝐴 ∈ ℂ ) | |
| 8 | nnrecre | ⊢ ( 𝑁 ∈ ℕ → ( 1 / 𝑁 ) ∈ ℝ ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / 𝑁 ) ∈ ℝ ) |
| 10 | 9 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 1 / 𝑁 ) ∈ ℂ ) |
| 11 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 13 | cxpmul2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 𝑁 ) ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑁 ) · 𝑁 ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) | |
| 14 | 7 10 12 13 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑁 ) · 𝑁 ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) ) |
| 15 | cxp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
| 17 | 6 14 16 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( ( 𝐴 ↑𝑐 ( 1 / 𝑁 ) ) ↑ 𝑁 ) = 𝐴 ) |