This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of exponents law for complex exponentiation. Proposition 10-4.2(b) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cxpmul | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℝ ) | |
| 3 | 2 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 4 | relogcl | ⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 7 | 1 3 6 | mulassd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐶 · 𝐵 ) · ( log ‘ 𝐴 ) ) = ( 𝐶 · ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 8 | 3 1 | mulcomd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) = ( 𝐶 · 𝐵 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 · 𝐶 ) · ( log ‘ 𝐴 ) ) = ( ( 𝐶 · 𝐵 ) · ( log ‘ 𝐴 ) ) ) |
| 10 | rpcn | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
| 12 | rpne0 | ⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → 𝐴 ≠ 0 ) |
| 14 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) | |
| 15 | 11 13 3 14 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) = ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) ) |
| 17 | 2 5 | remulcld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 18 | 17 | relogefd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( log ‘ ( exp ‘ ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| 19 | 16 18 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) = ( 𝐵 · ( log ‘ 𝐴 ) ) ) |
| 20 | 19 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐶 · ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ) = ( 𝐶 · ( 𝐵 · ( log ‘ 𝐴 ) ) ) ) |
| 21 | 7 9 20 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 · 𝐶 ) · ( log ‘ 𝐴 ) ) = ( 𝐶 · ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( exp ‘ ( ( 𝐵 · 𝐶 ) · ( log ‘ 𝐴 ) ) ) = ( exp ‘ ( 𝐶 · ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ) ) ) |
| 23 | 3 1 | mulcld | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 24 | cxpef | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 𝐵 · 𝐶 ) ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( exp ‘ ( ( 𝐵 · 𝐶 ) · ( log ‘ 𝐴 ) ) ) ) | |
| 25 | 11 13 23 24 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( exp ‘ ( ( 𝐵 · 𝐶 ) · ( log ‘ 𝐴 ) ) ) ) |
| 26 | cxpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) | |
| 27 | 11 3 26 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ) |
| 28 | cxpne0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐵 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) | |
| 29 | 11 13 3 28 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ) |
| 30 | cxpef | ⊢ ( ( ( 𝐴 ↑𝑐 𝐵 ) ∈ ℂ ∧ ( 𝐴 ↑𝑐 𝐵 ) ≠ 0 ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ) ) ) | |
| 31 | 27 29 1 30 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) = ( exp ‘ ( 𝐶 · ( log ‘ ( 𝐴 ↑𝑐 𝐵 ) ) ) ) ) |
| 32 | 22 25 31 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ↑𝑐 ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 ↑𝑐 𝐵 ) ↑𝑐 𝐶 ) ) |