This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a subcomplex vector space, which is an Abelian group (i.e. the vectors, with the operation of vector addition) accompanied by a scalar multiplication operation on the field of complex numbers. (Contributed by NM, 3-Nov-2006) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvsi.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| cvsi.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| cvsi.s | ⊢ 𝑆 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | ||
| cvsi.m | ⊢ ∙ = ( ·sf ‘ 𝑊 ) | ||
| cvsi.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| Assertion | cvsi | ⊢ ( 𝑊 ∈ ℂVec → ( 𝑊 ∈ Abel ∧ ( 𝑆 ⊆ ℂ ∧ ∙ : ( 𝑆 × 𝑋 ) ⟶ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvsi.x | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 2 | cvsi.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | cvsi.s | ⊢ 𝑆 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 4 | cvsi.m | ⊢ ∙ = ( ·sf ‘ 𝑊 ) | |
| 5 | cvsi.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | df-cvs | ⊢ ℂVec = ( ℂMod ∩ LVec ) | |
| 7 | 6 | elin2 | ⊢ ( 𝑊 ∈ ℂVec ↔ ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) ) |
| 8 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 9 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ Abel ) |
| 11 | 10 | adantl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) → 𝑊 ∈ Abel ) |
| 12 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 13 | 12 3 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝑆 ⊆ ℂ ) |
| 14 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 15 | 1 12 3 4 | lmodscaf | ⊢ ( 𝑊 ∈ LMod → ∙ : ( 𝑆 × 𝑋 ) ⟶ 𝑋 ) |
| 16 | 14 15 | syl | ⊢ ( 𝑊 ∈ ℂMod → ∙ : ( 𝑆 × 𝑋 ) ⟶ 𝑋 ) |
| 17 | 13 16 | jca | ⊢ ( 𝑊 ∈ ℂMod → ( 𝑆 ⊆ ℂ ∧ ∙ : ( 𝑆 × 𝑋 ) ⟶ 𝑋 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) → ( 𝑆 ⊆ ℂ ∧ ∙ : ( 𝑆 × 𝑋 ) ⟶ 𝑋 ) ) |
| 19 | 1 5 | clmvs1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 20 | 14 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ LMod ) |
| 21 | 20 | ad2antrr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑊 ∈ LMod ) |
| 22 | simplr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑦 ∈ 𝑆 ) | |
| 23 | simpllr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 24 | simpr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → 𝑧 ∈ 𝑋 ) | |
| 25 | 1 2 12 5 3 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) |
| 26 | 21 22 23 24 25 | syl13anc | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) |
| 27 | 26 | ralrimiva | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ) |
| 28 | 12 | clmadd | ⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → + = ( +g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 30 | 29 | oveqdr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 + 𝑧 ) = ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) ) |
| 31 | 30 | oveq1d | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) · 𝑥 ) ) |
| 32 | 20 | ad2antrr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑊 ∈ LMod ) |
| 33 | simplr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑦 ∈ 𝑆 ) | |
| 34 | simpr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 35 | simpllr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → 𝑥 ∈ 𝑋 ) | |
| 36 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 37 | 1 2 12 5 3 36 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ) |
| 38 | 32 33 34 35 37 | syl13anc | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ) |
| 39 | 31 38 | eqtrd | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ) |
| 40 | 12 | clmmul | ⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → · = ( .r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 42 | 41 | oveqdr | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝑦 · 𝑧 ) = ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) ) |
| 43 | 42 | oveq1d | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) · 𝑥 ) ) |
| 44 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 45 | 1 12 5 3 44 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) |
| 46 | 32 33 34 35 45 | syl13anc | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑦 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) |
| 47 | 43 46 | eqtrd | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) |
| 48 | 39 47 | jca | ⊢ ( ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) |
| 49 | 48 | ralrimiva | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) |
| 50 | 27 49 | jca | ⊢ ( ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑆 ) → ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) |
| 51 | 50 | ralrimiva | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) |
| 52 | 19 51 | jca | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑥 ∈ 𝑋 ) → ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝑊 ∈ ℂMod → ∀ 𝑥 ∈ 𝑋 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) → ∀ 𝑥 ∈ 𝑋 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) ) |
| 55 | 11 18 54 | 3jca | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑊 ∈ LVec ) → ( 𝑊 ∈ Abel ∧ ( 𝑆 ⊆ ℂ ∧ ∙ : ( 𝑆 × 𝑋 ) ⟶ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) ) ) |
| 56 | 7 55 | sylbi | ⊢ ( 𝑊 ∈ ℂVec → ( 𝑊 ∈ Abel ∧ ( 𝑆 ⊆ ℂ ∧ ∙ : ( 𝑆 × 𝑋 ) ⟶ 𝑋 ) ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 · 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ 𝑆 ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 · ( 𝑥 + 𝑧 ) ) = ( ( 𝑦 · 𝑥 ) + ( 𝑦 · 𝑧 ) ) ∧ ∀ 𝑧 ∈ 𝑆 ( ( ( 𝑦 + 𝑧 ) · 𝑥 ) = ( ( 𝑦 · 𝑥 ) + ( 𝑧 · 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) · 𝑥 ) = ( 𝑦 · ( 𝑧 · 𝑥 ) ) ) ) ) ) ) |